Exercise 8.1

(a) Let $\left(X,\|\cdot\|_{X}\right)$ be a separable normed \mathbb{K}-vector space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$). Prove that the weak ${ }^{*}$ topology on the unit ball $B^{*}:=\left\{\varphi \in X^{*}:\|\varphi\|_{X^{*}} \leq 1\right\}$ of X^{*} is metrizable.
(b) If X^{*} is separable, then $\left(B, \tau_{\mathrm{w}}\right)$ is metrizable.

Note: $\left(X, \tau_{\mathrm{w}}\right)$ is not metrizable when $\operatorname{dim} X=\infty$, as we saw on the last problem set!

Exercise 8.2

(a) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that there exists a subset $\Upsilon \subset X^{*}$ such that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\},
$$

which means that Q is an intersection of open, affine half-spaces.
(b) Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$
\operatorname{conv}(A):=\bigcap_{B \supset A, B \text { convex }} B
$$

Recall the following representation theorem for convex hulls

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

Using the representation of the convex hull above, prove that if $\left(X,\|\cdot\|_{X}\right)$ is a normed space and $A, B \subset X$ are compact, convex subsets, then $\operatorname{conv}(A \cup B)$ is compact.

Exercise 8.3 Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space over \mathbb{R}. Given a positive integer n, consider n pairwise distinct points x_{1}, \ldots, x_{n} in X and the functional

$$
F: X \rightarrow \mathbb{R}, \quad F(x)=\sum_{i=1}^{n}\left\|x-x_{i}\right\|_{X}^{2}
$$

(a) Prove that the functional F has a global minimum on X, namely the value $\inf _{x \in X} F(x)$ is a real number attained by F at some $\bar{x} \in X$.

[^0](b) Let us now assume that $\left(X,\|\cdot\|_{X}\right)$ is a Hilbert space (thus $\|\cdot\|_{X}$ is induced by a scalar product $\langle\cdot, \cdot\rangle_{X}$). Prove that the minimum $\bar{x} \in X$ is unique, and that \bar{x} belongs to the convex hull K of $\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 8.4 Let $m \in \mathbb{N}$ and let $\Omega \subseteq \mathbb{R}^{m}$ be a bounded measurable set with $|\Omega|>0$. For $g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, we define the map

$$
\begin{aligned}
V: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto \int_{\Omega} \int_{\Omega} g(x-y) f(x) f(y) d y d x
\end{aligned}
$$

and given $h \in L^{2}(\Omega, \mathbb{R})$, we define the map

$$
\begin{aligned}
E: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}+V(f)
\end{aligned}
$$

(a) Prove that V is weakly sequentially continuous by proceeding as follows.
(i) Show that the linear operator $T: L^{2}(\Omega, \mathbb{R}) \rightarrow L^{2}(\Omega, \mathbb{R})$ mapping $f \mapsto T f$ given by

$$
(T f)(x)=\int_{\Omega} g(x-y) f(y) d y
$$

is well-defined.
(ii) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Prove that $\left\|T f_{k}-T f\right\|_{L^{2}(\Omega, \mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$, where T is as in (i).
(iii) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Show that $V\left(f_{k}\right) \rightarrow V(f)$ as $k \rightarrow \infty$, i. e. V is weakly sequentially continuous.
(b) Under the assumption $g \geq 0$ almost everywhere, prove that E restricted to

$$
L_{+}^{2}(\Omega, \mathbb{R}):=\left\{f \in L^{2}(\Omega, \mathbb{R}) \mid f(x) \geq 0 \text { for almost every } x \in \Omega\right\}
$$

attains a global minimum.

[^0]: Last modified: 11 November 2022

