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Exercise 8.1

(a) Let (X, ∥ · ∥X) be a separable normed K-vector space (with K ∈ {R,C} ). Prove that
the weak∗ topology on the unit ball B∗ := {φ ∈ X∗ : ∥φ∥X∗ ≤ 1} of X∗ is metrizable.

(b) If X∗ is separable, then (B, τw) is metrizable.

Note: (X, τw) is not metrizable when dimX = ∞, as we saw on the last problem
set!

Solution.

(a) Let (xn)n∈N ⊆ X be a dense subset of the unit ball B := {x ∈ X : ∥x∥X ≤ 1} in X.
The fact that supn∈N ∥xn∥X ≤ 1 ensures that the mapping d : B∗ × B∗ → [0,∞),
given by

d(φ, ψ) =
∞∑

n=1
2−n |φ (xn) − ψ (xn)| for all φ, ψ ∈ B∗,

is well-defined. Indeed:

0 ≤
∞∑

n=1
2−n |φ (xn) − ψ (xn)| ≤

∞∑
n=1

2−n∥φ− ψ∥X∗ ∥xn∥X

≤
∞∑

n=1
2−n∥φ− ψ∥X∗ ≤ ∥φ− ψ∥X∗ for all φ, ψ ∈ B∗.

We claim that d is a metric on B∗. For this, note that symmetry is clear. Moreover,
for all φ, ψ, ξ ∈ B∗, we obtain

d(φ, ξ) =
∞∑

n=1
2−n |φ (xn) − ξ (xn)|

≤
∞∑

n=1
2−n |φ (xn) − ψ (xn)| +

∞∑
n=1

2−n |ψ (xn) − ξ (xn)|

= d(φ, ψ) + d(ψ, ξ),

that is, the triangle inequality holds. Finally, for φ, ψ ∈ B∗ we can infer from
d(φ, ψ) = 0 that φ (xn) = ψ (xn) for all n ∈ N. Hence, any φ, ψ ∈ B∗ with
d(φ, ψ) = 0 have to coincide on span {xn | n ∈ N} because of linearity and even on
span {xn | n ∈ N} because of continuity. As span {xn | n ∈ N} = X due to (xn)n∈N
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lying dense in the unit ball B of X, we obtain that any φ, ψ ∈ B∗ with d(φ, ψ) = 0
have to be identical.

All of the above is useless if we cannot show that the weak∗ topology τw∗ on B∗ is
equal to the topology τd on B∗ which is induced by the metric d. Next, we are going
to show that τd ⊆ τw∗ and τw∗ ⊆ τd.

“τd ⊆ τw∗” Let O ∈ τd and φ ∈ O be arbitrary. Then there exists ε ∈ (0,∞) such
that {ψ ∈ B∗ | d(φ, ψ) < ε} ⊆ O. With N ∈ N so that 2−N < ε

4 , we get that

∞∑
n=N+1

2−n |φ (xn) − ψ (xn)| ≤
∞∑

n=N+1
2−n (∥φ∥X∗ + ∥ψ∥X∗)

≤
∞∑

n=N+1
2−n+1 = 2−N+1 <

ε

2 for all ψ ∈ B∗

This implies in particular that

{
ψ ∈ B∗ | ∀n ∈ {1, 2, . . . , N} : |φ (xn) − ψ (xn) |< ε

2

}
⊆ O.

As φ ∈ O was arbitrary, this ensures that O ∈ τw∗ . As O ∈ τd was arbitrary, we’ve
arrived at showing τd ⊆ τw∗ .

“τw∗ ⊆ τd” Let O ∈ τw∗ and φ ∈ O be arbitrary. Then there exist N ∈ N, ε ∈ (0,∞)
and y1, y2, . . . , yN ∈ X satisfying that

{ψ ∈ B∗ | ∀n ∈ {1, 2, . . . , N} : |ψ (yn) − φ (yn) |< ε} ⊆ O

W.l.o.g. we may assume that supn∈N ∥yn∥X ≤ 1 (otherwise, replace yn by yn

∥yn∥X
if

∥yn∥X > 1). Since (xn)n∈N ⊆ B is dense in B, there exist k1, k2, . . . , kN ∈ N such
that

∥yn − xkn∥X <
ε

4 for all n ∈ {1, 2, . . . , N}.

Thus, with N := max1≤i≤N ki ∈ N, we have

{
ψ ∈ B∗ | ∀n ∈ {1, 2, . . . ,N } : |ψ (xn) − φ (xn) |< ε

2

}
⊆ {ψ ∈ B∗ | ∀n ∈ {1, 2, . . . , N} : |ψ (yn) − φ (yn) |< ε}
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since, if ψ ∈ B∗ satisfies |ψ (xn) − φ (xn)| < ε
2 for all n ∈ {1, 2, . . . ,N }, then it holds

in particular for all n ∈ {1, 2, . . . , N} that

|ψ (yn) − φ (yn)| ≤ |ψ (yn) − ψ (xkn)| + |ψ (xkn) − φ (xkn)| + |φ (xkn) − φ (yn)|
≤ ∥ψ∥X∗ ∥yn − xkn∥X + |ψ (xkn) − φ (xkn)| + ∥φ∥X∗ ∥xkn − yn∥X

≤ 2 ∥yn − xkn∥X + ε

2 < ε

But now we are done since for all ψ ∈ B∗ with d(ψ, φ) < 2−N ε
2 it holds that

|ψ (xn) − φ (xn)| ≤ 2nd(ψ, φ) < ε

2 for all n ∈ {1, 2, . . . ,N }

which implies (having (1) in mind) that

{
ψ ∈ B∗ | d(ψ, φ) < 2−N ε

2

}
⊆

{
ψ ∈ B∗ | ∀n ∈ {1, 2, . . . ,N } : |ψ (xn) − φ (xn) |< ε

2

}
⊆ {ψ ∈ B∗ | ∀n ∈ {1, 2, . . . , N} : |ψ (yn) − φ (yn) |< ε} .

As ϕ ∈ O was arbitrary, we demonstrated that O ∈ τd. As O ∈ τw∗ was arbitrary,
we showed τw∗ ⊆ τd

(b) The proof proceeds exactly as in (a).

Exercise 8.2

(a) Let (X, ∥ · ∥X) be a normed space and let ∅ ̸= Q ⊂ X be an open, convex subset
containing the origin. Prove that there exists a subset Υ ⊂ X∗ such that

Q =
⋂

f∈Υ
{x ∈ X | f(x) < 1},

which means that Q is an intersection of open, affine half-spaces.
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(b) Definition. Let (X, ∥ · ∥X) be a normed space. The convex hull of A ⊂ X is defined
as

conv(A) :=
⋂

B⊃A,B convex
B

Recall the following representation theorem for convex hulls

conv(A) =
{

n∑
k=1

λkxk | n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑

k=1
λk = 1

}
.

Using the representation of the convex hull above, prove that if (X, ∥ · ∥X) is a
normed space and A,B ⊂ X are compact, convex subsets, then conv(A ∪ B) is
compact.

Solution.

(a) Given the normed space (X, ∥ · ∥X), the non-trivial, open, convex subset Q ⊂ X and
the Minkowski functional

p : X → R

x 7→ inf
{
λ > 0 | 1

λ
x ∈ Q

}
,

we define the set

Υ := {f ∈ X∗ | ∀x ∈ X : f(x) ≤ p(x)}

and claim that

Q =
⋂

f∈Υ
{x ∈ X | f(x) < 1}.

“⊆” Let x ∈ Q. Since Q is open, we have p(x) < 1. For every f ∈ Υ we have
f(x) ≤ p(x) by definition. This proves f(x) < 1 for every f ∈ Υ.

“⊇” Suppose x0 /∈ Q. We hope to find some f ∈ Υ with f (x0) ≥ 1. Towards that
end, we define the functional

ℓ : span ({x0}) → R
tx0 7→ t.
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Since Q is convex and contains the origin, we have p (x0) ≥ 1. In particular, we have

∀t ≥ 0 : ℓ (tx0) = t ≤ tp (x0) = p (tx0)
∀t < 0 : ℓ (tx0) = t < 0 ≤ p (tx0)

The Hahn-Banach theorem implies that there exists a linear functional f : X → R
which agrees with ℓ on span ({x0}) and satisfies f(x) ≤ p(x) for every x ∈ X. Is f
continuous? Since Q is open and contains the origin, there exists r > 0 such that
Br(0) ⊂ Q. Thus, 1

λ
x ∈ Q with λ = 2

r
∥x∥X and the definition of p implies that

f(x) ≤ p(x) ≤ 2
r

∥x∥X

which yields that f is continuous and therefore f ∈ Υ. Since f (x0) = 1, the claim
follows.

(b) For completeness, we first prove the representation of the convex hull in the statement.

Lemma 0.1. The following representation theorem for convex hulls holds

conv(A) =
{

n∑
k=1

λkxk | n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑

k=1
λk = 1

}
.

Proof. Given the normed space (X, ∥ · ∥X) and the subset A ⊂ X, let

C :=
{

n∑
k=1

λkxk | n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑

k=1
λk = 1

}

We prove conv(A) = C by showing the two inclusions.

“⊆” Since A ⊂ C, the inclusion conv(A) ⊆ C follows from the definition of convex
hull, if we show that C is convex. In fact, given 0 < t < 1 we have

t
n∑

k=1
λkxk + (1 − t)

m∑
k=1

λ′
kx

′
k =

n+m∑
k=1

µkyk

with
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0 ≤ µk :=
tλk if k ∈ {1, . . . , n},

(1 − t)λ′
k−n if k ∈ {n+ 1, . . . , n+m}

A ∋ yk :=
xk if k ∈ {1, . . . , n},
x′

k−n if k ∈ {n+ 1, . . . , n+m}

and µ1 + . . .+ µn+m = t (λ1 + . . .+ λn) + (1 − t) (λ′
1 + . . .+ λ′

m) = t+ (1 − t) = 1.

“⊇” Let x1, . . . , xn ∈ A and let λ1, . . . , λn ≥ 0 with λ1 + . . .+λn = 1. We can assume
λ1 ≠ 0. Since conv(A) is convex and contains x1, x2 ∈ A, and since λ1

λ1+λ2
+ λ2

λ1+λ2
= 1,

conv(A) ∋ λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2 = λ1x1 + λ2x2

λ1 + λ2
=: y2

For the same reason,

conv(A) ∋ λ1 + λ2

λ1 + λ2 + λ3
y2 + λ3

λ1 + λ2 + λ3
x3 = λ1x2 + λ2x2 + λ3x3

λ1 + λ2 + λ3
=: y3.

Iterating this procedure, we obtain

conv(A) ∋ λ1 + . . .+ λk−1

λ1 + . . .+ λk

yk−1 + λk

λ1 + . . .+ λk

xk = λ1x1 + . . .+ λkxk

λ1 + . . .+ λk

=: yk.

for every k ∈ {3, . . . , n}. Since λ1 + . . . + λn = 1, we have yn = λ1x1 + . . . + λnxn

which concludes the proof of conv(A) ⊇ C.

Now we are ready to prove (b). Given the normed space (X, ∥ · ∥X), the convex
subsets A,B ⊂ X and defining △ := {(s, t) ∈ R2 | s+ t = 1, s, t ≥ 0}, we claim that

conv(A ∪B) = D :=
⋃

(s,t)∈△
(sA+ tB)

“⊆” By choosing (s, t) = (1, 0) we see A ⊂ D. Analogously, B ⊂ D, hence A∪B ⊂ D.
If x ∈ (conv(A ∪ B))\(A ∪ B), then the representation theorem for convex hulls
implies that x is of the form

x =
j∑

k=1
skak +

n∑
k=j+1

tkbk,
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where 0 ≤ j ≤ n ∈ N, where ak ∈ A, sk ≥ 0 for all k = 1, . . . , j and bk ∈ B, tk ≥ 0 for
every k = j + 1, . . . , n, and where s1 + . . .+ sj + tj+1 + . . .+ tn = 1. Since x /∈ A∪B
by assumption, we have

s :=
j∑

k=1
sk > 0, t :=

n∑
k=j+1

tk > 0,

with s+ t = 1. Since A and B are both convex by assumption,

a := 1
s

j∑
k=1

skak ∈ A, b := 1
t

n∑
k=j+1

tkbk ∈ B,

and we have shown x = sa+ tb ∈ D.

“⊇” Let a ∈ A and b ∈ B. Then a, b ∈ conv(A∪B). Since conv(A∪B) is convex, we
must have sa+ tb ∈ conv(A∪B) for every (s, t) ∈ △. This proves conv(A∪B) ⊇ D.

Under the assumption that the convex sets A and B are compact, we show now that

D =
⋃

(s,t)∈△
(sA+ tB)

is compact. Let (xn)n∈N be a sequence in D. Then there exist an ∈ A and bn ∈ B as
well as (sn, tn) ∈ △ such that xn = snan + tnbn for every n ∈ N. We argue in 3 steps:

• Since △ is compact in R2, a subsequence ((sn, tn))n∈Λ1⊂N converges in △.

• Since A is compact in X, a subsequence (an)n∈Λ2⊂Λ1
converges in A.

• Since B is compact in X, a subsequence (bn)n∈Λ3⊂Λ2
converges in B.

Therefore, the subsequence (xn)n∈Λ3
converges in D which concludes the proof.

Exercise 8.3 Let (X, ∥ · ∥X) be a reflexive Banach space over R. Given a positive
integer n, consider n pairwise distinct points x1, . . . , xn in X and the functional

F : X → R, F (x) =
n∑

i=1
∥x− xi∥2

X
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(a) Prove that the functional F has a global minimum on X, namely the value infx∈X F (x)
is a real number attained by F at some x̄ ∈ X.

(b) Let us now assume that (X, ∥ · ∥X) is a Hilbert space (thus ∥ · ∥X is induced by a
scalar product ⟨·, ·⟩X). Prove that the minimum x̄ ∈ X is unique, and that x̄ belongs
to the convex hull K of {x1, . . . , xn}.

Solution.

(a) First note that the map F is coercive, because F (x) ≥ ∥x− x1∥2
X → ∞ as ∥x∥X → ∞.

Moreover F is weakly sequentially lower semicontinuous because the map x 7→ ∥x∥X

is.

Hence, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1)
applies and we obtain x̄ ∈ X satisfying

F (x̄) = inf
x∈X

F (x).

(b) Suppose, ȳ ∈ X∖ {x̄} is another minimizer of F and consider z̄ = 1
2(x̄+ ȳ). Since we

are assuming that X is a Hilbert space, the parallelogram identity holds and implies

∥z̄ − xi∥2
X =

∥∥∥∥ x̄− xi

2 + ȳ − xi

2

∥∥∥∥2

X

= 2
∥∥∥∥ x̄− xi

2

∥∥∥∥2

X
+ 2

∥∥∥∥ ȳ − xi

2

∥∥∥∥2

X
− ∥ x̄− xi

2 − ȳ − xi

2︸ ︷︷ ︸
̸=0

∥2
X

<
∥x̄− xi∥2

X

2 + ∥ȳ − xi∥2
X

2 .

Hence, a contradiction follows from

F (z̄) < F (x̄)
2 + F (ȳ)

2 = inf
x∈X

F (x)

which proves that the minimizer is unique.

Moreover, if ∥ · ∥X is induced by the scalar product ⟨·, ·⟩X , then the minimizer x̄ ∈ X
of F has the property that

∀y ∈ X : 0 = d

dt

∣∣∣∣∣
t=0

F (x̄+ ty) = 2
n∑

i=1
⟨y, x̄− xi⟩X = 2

〈
y,

n∑
i=1

(x̄− xi)
〉

X
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Consequently,

n∑
i=1

(x̄− xi) = 0 ⇒ nx̄ =
n∑

i=1
xi ⇒ x̄ =

n∑
i=1

1
n
xi

which proves that x̄ is in the convex hull of {x1, . . . , xn} ⊂ X.

Exercise 8.4 Let m ∈ N and let Ω ⊆ Rm be a bounded measurable set with |Ω| > 0.
For g ∈ L2 (Rm,R), we define the map

V : L2(Ω,R) → R

f 7→
∫

Ω

∫
Ω
g(x− y)f(x)f(y)dydx

and given h ∈ L2(Ω,R), we define the map

E : L2(Ω,R) → R
f 7→ ∥f − h∥2

L2(Ω,R) + V (f).

(a) Prove that V is weakly sequentially continuous by proceeding as follows.

(i) Show that the linear operator T : L2(Ω,R) → L2(Ω,R) mapping f 7→ Tf given
by

(Tf)(x) =
∫

Ω
g(x− y)f(y)dy

is well-defined.

(ii) Let (fk)k∈N be a sequence in L2(Ω,R) such that fk
w
⇁ f in L2(Ω,R) as k → ∞.

Prove that ∥Tfk − Tf∥L2(Ω,R) → 0 as k → ∞, where T is as in (i).

(iii) Let (fk)k∈N be a sequence in L2(Ω,R) such that fk
w
⇁ f in L2(Ω,R) as k → ∞.

Show that V (fk) → V (f) as k → ∞, i. e. V is weakly sequentially continuous.

(b) Under the assumption g ≥ 0 almost everywhere, prove that E restricted to

L2
+(Ω,R) :=

{
f ∈ L2(Ω,R) | f(x) ≥ 0 for almost every x ∈ Ω

}
attains a global minimum.

Solution.
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(a) Given a bounded measurable Ω ⊆ Rm and g ∈ L2 (Rm,R), the goal is weak sequential
continuity of the map

V : L2(Ω,R) → R

f 7→
∫

Ω

∫
Ω
g(x− y)f(x)f(y)dydx.

(i) Let f ∈ L2(Ω,R). Note that (Tf)(x) is well-defined for every x ∈ Ω by the
Cauchy-Schwarz inequality. Since Ω ⊆ Rm, being a bounded set, has finite
volume |Ω| < ∞, we obtain in addition that Tf ∈ L2(Ω,R) :

∥Tf∥2
L2(Ω,R) =

∫
Ω

|(Tf)(x)|2dx =
∫

Ω

∣∣∣∣∫
Ω
g(x− y)f(y)dy

∣∣∣∣2 dx
≤

∫
Ω

(∫
Ω

|g(x− y)f(y)|dy
)2
dx

≤
∫

Ω

(∫
Ω

|g(x− y)|2dy
)

∥f∥2
L2(Ω,R)dx

≤
∫

Ω
∥g∥2

L2(Rm,R)∥f∥2
L2(Ω,R)dx ≤ |Ω|∥g∥2

L2(Rm,R)∥f∥2
L2(Ω,R) < ∞.

(ii) Since the sequence (fk)k∈N is weakly convergent, it is bounded (by Banach-
Steinhaus: ∃C ∈ [0,∞) such that ∥fk∥L2(Ω,R) ≤ C for every k ∈ N. For every
fixed x0 ∈ Ω and k ∈ N, there holds

|(Tfk) (x0)| ≤
∫

Ω
|g (x0 − y) fk(y)| dy ≤

(∫
Ω

|g (x0 − y)|2 dy
) 1

2
(∫

Ω
|fk(y)|2 dy

) 1
2

≤ ∥g∥L2(Rm,R) ∥fk∥L2(Ω,R)

In particular, the map fk 7→ (Tfk) (x0) is a linear continuous functional
L2(Ω,R) → R. Therefore, weak convergence fk

w
⇁ f implies (Tfk) (x0) →

(Tf) (x0) as k → ∞. In other words, Tfk converges pointwise to Tf . Moreover,

sup
k∈N

|(Tfk) (x0)| ≤ sup
k∈N

(
∥g∥L2(Rm,R) ∥fk∥L2(Ω,R)

)
≤ C∥g∥L2(Rm,R).

Since Ω is bounded, the constant C∥g∥L2(Rm,R) on the right right hand side be-
longs L2(Ω,R). Hence, the claim follows by Lebesgue’s dominated convergence
theorem.

(iii) Let T be as in Claim 1. Since fk
w
⇁ f and ∥Tfk − Tf∥L2(Ω,R) → 0 as k → ∞

by claim 2 , we conclude

V (fk) =
∫

Ω
fk(x)

∫
Ω
g(x− y)fk(y)dydx = ⟨fk, T fk⟩L2(Ω)

k→∞−→ ⟨f, Tf⟩ = V (f),

using the continuity property of scalar products proven in Exercise 6.3-(b).
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(b) In the case that 0 ≤ g ∈ L2 (Rm,R) and h ∈ L2(Ω,R) the claim is that the map

E : L2(Ω,R) → R
f 7→ ∥f − h∥2

L2(Ω,R) + V (f)

restricted to L2
+(Ω,R) attains a global minimum. Since L2(Ω,R) is reflexive (being

a Hilbert space), we may invoke the direct method in the calculus of variations if we
prove the following claims.

Claim 1. L2
+(Ω,R) is non-empty and weakly sequentially closed.

Proof. Clearly, L2
+(Ω,R) ∋ 0 is non-empty. Let (fk)k∈N be a sequence in L2

+(Ω,R)
such that fk

w
⇁ f for some f ∈ L2(Ω,R) as k → ∞. Suppose f /∈ L2

+(Ω,R). Then
there exists U ⊆ Ω with positive measure such that f |U < 0. In particular, we
can test the weak convergence with the characteristic function χU to obtain the
contradiction

0 > ⟨f, χU⟩L2(Ω,R) = lim
k→∞

⟨fk, χU⟩ ≥ 0

Claim 2. E: L2
+(Ω,R) → R is coercive and weakly sequentially lower semi-continuous.

Proof. Since V (f) ≥ 0 if both g ≥ 0 and f ≥ 0 almost everywhere, we have

E(f) ≥ ∥f − h∥2
L2(Ω,R) ≥ ∥f∥2

L2(Ω,R) − 2∥f∥L2(Ω,R)∥h∥L2(Ω,R) + ∥h∥2
L2(Ω,R)

≥ 1
2∥f∥2

L2(Ω,R) − ∥h∥2
L2(Ω,R)

for every f ∈ L2
+(Ω,R) as we have by Young’s inequality that 2ab ≤ 1

2a
2 + 2b2 for

all a, b ∈ R. Since h ∈ L2(Ω,R) is fixed, E is coercive. By part (a), L2(Ω,R) ∋ f 7→
V (f) ∈ R is weakly sequentially lower semi-continuous. Moreover, every term on the
right hand side of

∥f − h∥2
L2(Ω,R) = ∥f∥2

L2(Ω,R) − 2⟨f, h⟩L2(Ω,R) + ∥h∥2
L2(Ω,R)

is weakly sequentially lower semi-continuous in f since h is fixed. This proves the
claim.
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