Exercise 8.1

(a) Let $\left(X,\|\cdot\|_{X}\right)$ be a separable normed \mathbb{K}-vector space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$). Prove that the weak* topology on the unit ball $B^{*}:=\left\{\varphi \in X^{*}:\|\varphi\|_{X^{*}} \leq 1\right\}$ of X^{*} is metrizable.
(b) If X^{*} is separable, then $\left(B, \tau_{\mathrm{w}}\right)$ is metrizable.

Note: $\left(X, \tau_{\mathrm{w}}\right)$ is not metrizable when $\operatorname{dim} X=\infty$, as we saw on the last problem set!

Solution.

(a) Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a dense subset of the unit ball $B:=\left\{x \in X:\|x\|_{X} \leq 1\right\}$ in X. The fact that $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{X} \leq 1$ ensures that the mapping $d: B^{*} \times B^{*} \rightarrow[0, \infty)$, given by

$$
d(\varphi, \psi)=\sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| \quad \text { for all } \varphi, \psi \in B^{*}
$$

is well-defined. Indeed:

$$
\begin{aligned}
0 & \leq \sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| \leq \sum_{n=1}^{\infty} 2^{-n}\|\varphi-\psi\|_{X^{*}}\left\|x_{n}\right\|_{X} \\
& \leq \sum_{n=1}^{\infty} 2^{-n}\|\varphi-\psi\|_{X^{*}} \leq\|\varphi-\psi\|_{X^{*}} \quad \text { for all } \varphi, \psi \in B^{*}
\end{aligned}
$$

We claim that d is a metric on B^{*}. For this, note that symmetry is clear. Moreover, for all $\varphi, \psi, \xi \in B^{*}$, we obtain

$$
\begin{aligned}
d(\varphi, \xi) & =\sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\xi\left(x_{n}\right)\right| \\
& \leq \sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right|+\sum_{n=1}^{\infty} 2^{-n}\left|\psi\left(x_{n}\right)-\xi\left(x_{n}\right)\right| \\
& =d(\varphi, \psi)+d(\psi, \xi),
\end{aligned}
$$

that is, the triangle inequality holds. Finally, for $\varphi, \psi \in B^{*}$ we can infer from $d(\varphi, \psi)=0$ that $\varphi\left(x_{n}\right)=\psi\left(x_{n}\right)$ for all $n \in \mathbb{N}$. Hence, any $\varphi, \psi \in B^{*}$ with $d(\varphi, \psi)=0$ have to coincide on span $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ because of linearity and even on span $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ because of continuity. As $\overline{\operatorname{span}\left\{x_{n} \mid n \in \mathbb{N}\right\}}=X$ due to $\left(x_{n}\right)_{n \in \mathbb{N}}$

[^0]lying dense in the unit ball B of X, we obtain that any $\varphi, \psi \in B^{*}$ with $d(\varphi, \psi)=0$ have to be identical.

All of the above is useless if we cannot show that the weak ${ }^{*}$ topology $\tau_{\mathrm{w}^{*}}$ on B^{*} is equal to the topology τ_{d} on B^{*} which is induced by the metric d. Next, we are going to show that $\tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}}$ and $\tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}}$.
" $\tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}}$ " Let $O \in \tau_{\mathrm{d}}$ and $\varphi \in O$ be arbitrary. Then there exists $\varepsilon \in(0, \infty)$ such that $\left\{\psi \in B^{*} \mid d(\varphi, \psi)<\varepsilon\right\} \subseteq O$. With $N \in \mathbb{N}$ so that $2^{-N}<\frac{\varepsilon}{4}$, we get that

$$
\begin{aligned}
\sum_{n=N+1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| & \leq \sum_{n=N+1}^{\infty} 2^{-n}\left(\|\varphi\|_{X^{*}}+\|\psi\|_{X^{*}}\right) \\
& \leq \sum_{n=N+1}^{\infty} 2^{-n+1}=2^{-N+1}<\frac{\varepsilon}{2} \quad \text { for all } \psi \in B^{*}
\end{aligned}
$$

This implies in particular that

$$
\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\} \subseteq O .\right.
$$

As $\varphi \in O$ was arbitrary, this ensures that $O \in \tau_{\mathrm{w}^{*}}$. As $O \in \tau_{\mathrm{d}}$ was arbitrary, we've arrived at showing $\tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}}$.
" $\tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}}$ " Let $O \in \tau_{\mathrm{w}^{*}}$ and $\varphi \in O$ be arbitrary. Then there exist $N \in \mathbb{N}, \varepsilon \in(0, \infty)$ and $y_{1}, y_{2}, \ldots, y_{N} \in X$ satisfying that

$$
\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\} \subseteq O\right.
$$

W.l.o.g. we may assume that $\sup _{n \in \mathbb{N}}\left\|y_{n}\right\|_{X} \leq 1$ (otherwise, replace y_{n} by $\frac{y_{n}}{\left\|y_{n}\right\|_{X}}$ if $\left\|y_{n}\right\|_{X}>1$). Since $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq B$ is dense in B, there exist $k_{1}, k_{2}, \ldots, k_{N} \in \mathbb{N}$ such that

$$
\left\|y_{n}-x_{k_{n}}\right\|_{X}<\frac{\varepsilon}{4} \quad \text { for all } n \in\{1,2, \ldots, N\} .
$$

Thus, with $\mathcal{N}:=\max _{1 \leq i \leq N} k_{i} \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, \mathcal{N}\}:\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\}\right. \\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\}\right.
\end{aligned}
$$

since, if $\psi \in B^{*}$ satisfies $\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}$ for all $n \in\{1,2, \ldots, \mathcal{N}\}$, then it holds in particular for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{aligned}
\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right| & \leq\left|\psi\left(y_{n}\right)-\psi\left(x_{k_{n}}\right)\right|+\left|\psi\left(x_{k_{n}}\right)-\varphi\left(x_{k_{n}}\right)\right|+\left|\varphi\left(x_{k_{n}}\right)-\varphi\left(y_{n}\right)\right| \\
& \leq\|\psi\|_{X^{*}}\left\|y_{n}-x_{k_{n}}\right\|_{X}+\left|\psi\left(x_{k_{n}}\right)-\varphi\left(x_{k_{n}}\right)\right|+\|\varphi\|_{X^{*}}\left\|x_{k_{n}}-y_{n}\right\|_{X} \\
& \leq 2\left\|y_{n}-x_{k_{n}}\right\|_{X}+\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

But now we are done since for all $\psi \in B^{*}$ with $d(\psi, \varphi)<2^{-\mathcal{N} \frac{\varepsilon}{2}}$ it holds that

$$
\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right| \leq 2^{n} d(\psi, \varphi)<\frac{\varepsilon}{2} \quad \text { for all } n \in\{1,2, \ldots, \mathcal{N}\}
$$

which implies (having (1) in mind) that

$$
\begin{aligned}
& \left\{\psi \in B^{*} \left\lvert\, d(\psi, \varphi)<2^{-\mathcal{N}} \frac{\varepsilon}{2}\right.\right\} \\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, \mathcal{N}\}:\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\}\right. \\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\} .\right.
\end{aligned}
$$

As $\phi \in O$ was arbitrary, we demonstrated that $O \in \tau_{\mathrm{d}}$. As $O \in \tau_{\mathrm{w}^{*}}$ was arbitrary, we showed $\tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}}$
(b) The proof proceeds exactly as in (a).

Exercise 8.2

(a) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that there exists a subset $\Upsilon \subset X^{*}$ such that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\},
$$

which means that Q is an intersection of open, affine half-spaces.
(b) Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$
\operatorname{conv}(A):=\bigcap_{B \supset A, B \text { convex }} B
$$

Recall the following representation theorem for convex hulls

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

Using the representation of the convex hull above, prove that if $\left(X,\|\cdot\|_{X}\right)$ is a normed space and $A, B \subset X$ are compact, convex subsets, then $\operatorname{conv}(A \cup B)$ is compact.

Solution.

(a) Given the normed space $\left(X,\|\cdot\|_{X}\right)$, the non-trivial, open, convex subset $Q \subset X$ and the Minkowski functional

$$
\begin{aligned}
p: X & \rightarrow \mathbb{R} \\
x & \mapsto \inf \left\{\lambda>0 \left\lvert\, \frac{1}{\lambda} x \in Q\right.\right\},
\end{aligned}
$$

we define the set

$$
\Upsilon:=\left\{f \in X^{*} \mid \forall x \in X: f(x) \leq p(x)\right\}
$$

and claim that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\} .
$$

" \subseteq " Let $x \in Q$. Since Q is open, we have $p(x)<1$. For every $f \in \Upsilon$ we have $f(x) \leq p(x)$ by definition. This proves $f(x)<1$ for every $f \in \Upsilon$.
" \supseteq " Suppose $x_{0} \notin Q$. We hope to find some $f \in \Upsilon$ with $f\left(x_{0}\right) \geq 1$. Towards that end, we define the functional

$$
\begin{aligned}
\ell: \operatorname{span}\left(\left\{x_{0}\right\}\right) & \rightarrow \mathbb{R} \\
t x_{0} & \mapsto t .
\end{aligned}
$$

Since Q is convex and contains the origin, we have $p\left(x_{0}\right) \geq 1$. In particular, we have

$$
\begin{aligned}
& \forall t \geq 0: \quad \ell\left(t x_{0}\right)=t \leq t p\left(x_{0}\right)=p\left(t x_{0}\right) \\
& \forall t<0: \quad \ell\left(t x_{0}\right)=t<0 \leq p\left(t x_{0}\right)
\end{aligned}
$$

The Hahn-Banach theorem implies that there exists a linear functional $f: X \rightarrow \mathbb{R}$ which agrees with ℓ on $\operatorname{span}\left(\left\{x_{0}\right\}\right)$ and satisfies $f(x) \leq p(x)$ for every $x \in X$. Is f continuous? Since Q is open and contains the origin, there exists $r>0$ such that $B_{r}(0) \subset Q$. Thus, $\frac{1}{\lambda} x \in Q$ with $\lambda=\frac{2}{r}\|x\|_{X}$ and the definition of p implies that

$$
f(x) \leq p(x) \leq \frac{2}{r}\|x\|_{X}
$$

which yields that f is continuous and therefore $f \in \Upsilon$. Since $f\left(x_{0}\right)=1$, the claim follows.
(b) For completeness, we first prove the representation of the convex hull in the statement.

Lemma 0.1. The following representation theorem for convex hulls holds

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

Proof. Given the normed space $\left(X,\|\cdot\|_{X}\right)$ and the subset $A \subset X$, let

$$
\mathcal{C}:=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

We prove $\operatorname{conv}(A)=\mathcal{C}$ by showing the two inclusions.
" \subseteq " Since $A \subset \mathcal{C}$, the inclusion $\operatorname{conv}(A) \subseteq \mathcal{C}$ follows from the definition of convex hull, if we show that \mathcal{C} is convex. In fact, given $0<t<1$ we have

$$
t \sum_{k=1}^{n} \lambda_{k} x_{k}+(1-t) \sum_{k=1}^{m} \lambda_{k}^{\prime} x_{k}^{\prime}=\sum_{k=1}^{n+m} \mu_{k} y_{k}
$$

with

$$
\begin{aligned}
& 0 \leq \mu_{k}:= \begin{cases}t \lambda_{k} & \text { if } k \in\{1, \ldots, n\}, \\
(1-t) \lambda_{k-n}^{\prime} & \text { if } k \in\{n+1, \ldots, n+m\}\end{cases} \\
& A \ni y_{k}:= \begin{cases}x_{k} & \text { if } k \in\{1, \ldots, n\}, \\
x_{k-n}^{\prime} & \text { if } k \in\{n+1, \ldots, n+m\}\end{cases}
\end{aligned}
$$

and $\mu_{1}+\ldots+\mu_{n+m}=t\left(\lambda_{1}+\ldots+\lambda_{n}\right)+(1-t)\left(\lambda_{1}^{\prime}+\ldots+\lambda_{m}^{\prime}\right)=t+(1-t)=1$.
" \supseteq " Let $x_{1}, \ldots, x_{n} \in A$ and let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ with $\lambda_{1}+\ldots+\lambda_{n}=1$. We can assume $\lambda_{1} \neq 0$. Since $\operatorname{conv}(A)$ is convex and contains $x_{1}, x_{2} \in A$, and since $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=1$,

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} x_{1}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} x_{2}=\frac{\lambda_{1} x_{1}+\lambda_{2} x_{2}}{\lambda_{1}+\lambda_{2}}=: y_{2}
$$

For the same reason,

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} y_{2}+\frac{\lambda_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} x_{3}=\frac{\lambda_{1} x_{2}+\lambda_{2} x_{2}+\lambda_{3} x_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}=: y_{3} .
$$

Iterating this procedure, we obtain

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}+\ldots+\lambda_{k-1}}{\lambda_{1}+\ldots+\lambda_{k}} y_{k-1}+\frac{\lambda_{k}}{\lambda_{1}+\ldots+\lambda_{k}} x_{k}=\frac{\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}}{\lambda_{1}+\ldots+\lambda_{k}}=: y_{k}
$$

for every $k \in\{3, \ldots, n\}$. Since $\lambda_{1}+\ldots+\lambda_{n}=1$, we have $y_{n}=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}$ which concludes the proof of $\operatorname{conv}(A) \supseteq \mathcal{C}$.

Now we are ready to prove (b). Given the normed space ($X,\|\cdot\|_{X}$), the convex subsets $A, B \subset X$ and defining $\triangle:=\left\{(s, t) \in \mathbb{R}^{2} \mid s+t=1, s, t \geq 0\right\}$, we claim that

$$
\operatorname{conv}(A \cup B)=\mathcal{D}:=\bigcup_{(s, t) \in \Delta}(s A+t B)
$$

" \subseteq " By choosing $(s, t)=(1,0)$ we see $A \subset \mathcal{D}$. Analogously, $B \subset \mathcal{D}$, hence $A \cup B \subset \mathcal{D}$. If $x \in(\operatorname{conv}(A \cup B)) \backslash(A \cup B)$, then the representation theorem for convex hulls implies that x is of the form

$$
x=\sum_{k=1}^{j} s_{k} a_{k}+\sum_{k=j+1}^{n} t_{k} b_{k},
$$

where $0 \leq j \leq n \in \mathbb{N}$, where $a_{k} \in A, s_{k} \geq 0$ for all $k=1, \ldots, j$ and $b_{k} \in B, t_{k} \geq 0$ for every $k=j+1, \ldots, n$, and where $s_{1}+\ldots+s_{j}+t_{j+1}+\ldots+t_{n}=1$. Since $x \notin A \cup B$ by assumption, we have

$$
s:=\sum_{k=1}^{j} s_{k}>0, \quad t:=\sum_{k=j+1}^{n} t_{k}>0
$$

with $s+t=1$. Since A and B are both convex by assumption,

$$
a:=\frac{1}{s} \sum_{k=1}^{j} s_{k} a_{k} \in A, \quad b:=\frac{1}{t} \sum_{k=j+1}^{n} t_{k} b_{k} \in B,
$$

and we have shown $x=s a+t b \in \mathcal{D}$.
"?" Let $a \in A$ and $b \in B$. Then $a, b \in \operatorname{conv}(A \cup B)$. Since $\operatorname{conv}(A \cup B)$ is convex, we must have $s a+t b \in \operatorname{conv}(A \cup B)$ for every $(s, t) \in \triangle$. This proves $\operatorname{conv}(A \cup B) \supseteq \mathcal{D}$. Under the assumption that the convex sets A and B are compact, we show now that

$$
\mathcal{D}=\bigcup_{(s, t) \in \Delta}(s A+t B)
$$

is compact. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{D}. Then there exist $a_{n} \in A$ and $b_{n} \in B$ as well as $\left(s_{n}, t_{n}\right) \in \triangle$ such that $x_{n}=s_{n} a_{n}+t_{n} b_{n}$ for every $n \in \mathbb{N}$. We argue in 3 steps:

- Since \triangle is compact in \mathbb{R}^{2}, a subsequence $\left(\left(s_{n}, t_{n}\right)\right)_{n \in \Lambda_{1} \subset \mathbb{N}}$ converges in \triangle.
- Since A is compact in X, a subsequence $\left(a_{n}\right)_{n \in \Lambda_{2} \subset \Lambda_{1}}$ converges in A.
- Since B is compact in X, a subsequence $\left(b_{n}\right)_{n \in \Lambda_{3} \subset \Lambda_{2}}$ converges in B.

Therefore, the subsequence $\left(x_{n}\right)_{n \in \Lambda_{3}}$ converges in \mathcal{D} which concludes the proof.

Exercise 8.3 Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space over \mathbb{R}. Given a positive integer n, consider n pairwise distinct points x_{1}, \ldots, x_{n} in X and the functional

$$
F: X \rightarrow \mathbb{R}, \quad F(x)=\sum_{i=1}^{n}\left\|x-x_{i}\right\|_{X}^{2}
$$

Prof. P. Hintz
Assistant: R. Caniato
Functional Analysis I
Exercise Sheet 8
(a) Prove that the functional F has a global minimum on X, namely the value $\inf _{x \in X} F(x)$ is a real number attained by F at some $\bar{x} \in X$.
(b) Let us now assume that $\left(X,\|\cdot\|_{X}\right)$ is a Hilbert space (thus $\|\cdot\|_{X}$ is induced by a scalar product $\langle\cdot, \cdot\rangle_{X}$). Prove that the minimum $\bar{x} \in X$ is unique, and that \bar{x} belongs to the convex hull K of $\left\{x_{1}, \ldots, x_{n}\right\}$.

Solution.

(a) First note that the map F is coercive, because $F(x) \geq\left\|x-x_{1}\right\|_{X}^{2} \rightarrow \infty$ as $\|x\|_{X} \rightarrow \infty$. Moreover F is weakly sequentially lower semicontinuous because the map $x \mapsto\|x\|_{X}$ is.

Hence, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1) applies and we obtain $\bar{x} \in X$ satisfying

$$
F(\bar{x})=\inf _{x \in X} F(x) .
$$

(b) Suppose, $\bar{y} \in X \backslash\{\bar{x}\}$ is another minimizer of F and consider $\bar{z}=\frac{1}{2}(\bar{x}+\bar{y})$. Since we are assuming that X is a Hilbert space, the parallelogram identity holds and implies

$$
\begin{aligned}
\left\|\bar{z}-x_{i}\right\|_{X}^{2} & =\left\|\frac{\bar{x}-x_{i}}{2}+\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2} \\
& =2\left\|\frac{\bar{x}-x_{i}}{2}\right\|_{X}^{2}+2\left\|\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2}-\|\underbrace{\frac{\bar{x}-x_{i}}{2}-\frac{\bar{y}-x_{i}}{2}}_{\neq 0}\|_{X}^{2} \\
& <\frac{\left\|\bar{x}-x_{i}\right\|_{X}^{2}}{2}+\frac{\left\|\bar{y}-x_{i}\right\|_{X}^{2}}{2} .
\end{aligned}
$$

Hence, a contradiction follows from

$$
F(\bar{z})<\frac{F(\bar{x})}{2}+\frac{F(\bar{y})}{2}=\inf _{x \in X} F(x)
$$

which proves that the minimizer is unique.
Moreover, if $\|\cdot\|_{X}$ is induced by the scalar product $\langle\cdot, \cdot\rangle_{X}$, then the minimizer $\bar{x} \in X$ of F has the property that

$$
\forall y \in X: \quad 0=\left.\frac{d}{d t}\right|_{t=0} F(\bar{x}+t y)=2 \sum_{i=1}^{n}\left\langle y, \bar{x}-x_{i}\right\rangle_{X}=2\left\langle y, \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)\right\rangle_{X}
$$

Consequently,

$$
\sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)=0 \quad \Rightarrow \quad n \bar{x}=\sum_{i=1}^{n} x_{i} \quad \Rightarrow \quad \bar{x}=\sum_{i=1}^{n} \frac{1}{n} x_{i}
$$

which proves that \bar{x} is in the convex hull of $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$.

Exercise 8.4 Let $m \in \mathbb{N}$ and let $\Omega \subseteq \mathbb{R}^{m}$ be a bounded measurable set with $|\Omega|>0$. For $g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, we define the map

$$
\begin{aligned}
V: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto \int_{\Omega} \int_{\Omega} g(x-y) f(x) f(y) d y d x
\end{aligned}
$$

and given $h \in L^{2}(\Omega, \mathbb{R})$, we define the map

$$
\begin{aligned}
E: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}+V(f) .
\end{aligned}
$$

(a) Prove that V is weakly sequentially continuous by proceeding as follows.
(i) Show that the linear operator $T: L^{2}(\Omega, \mathbb{R}) \rightarrow L^{2}(\Omega, \mathbb{R})$ mapping $f \mapsto T f$ given by

$$
(T f)(x)=\int_{\Omega} g(x-y) f(y) d y
$$

is well-defined.
(ii) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Prove that $\left\|T f_{k}-T f\right\|_{L^{2}(\Omega, \mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$, where T is as in (i).
(iii) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Show that $V\left(f_{k}\right) \rightarrow V(f)$ as $k \rightarrow \infty$, i. e. V is weakly sequentially continuous.
(b) Under the assumption $g \geq 0$ almost everywhere, prove that E restricted to

$$
L_{+}^{2}(\Omega, \mathbb{R}):=\left\{f \in L^{2}(\Omega, \mathbb{R}) \mid f(x) \geq 0 \text { for almost every } x \in \Omega\right\}
$$

attains a global minimum.

Solution.

(a) Given a bounded measurable $\Omega \subseteq \mathbb{R}^{m}$ and $g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, the goal is weak sequential continuity of the map

$$
\begin{aligned}
V: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto \int_{\Omega} \int_{\Omega} g(x-y) f(x) f(y) d y d x .
\end{aligned}
$$

(i) Let $f \in L^{2}(\Omega, \mathbb{R})$. Note that $(T f)(x)$ is well-defined for every $x \in \Omega$ by the Cauchy-Schwarz inequality. Since $\Omega \subseteq \mathbb{R}^{m}$, being a bounded set, has finite volume $|\Omega|<\infty$, we obtain in addition that $T f \in L^{2}(\Omega, \mathbb{R})$:

$$
\begin{aligned}
\|T f\|_{L^{2}(\Omega, \mathbb{R})}^{2} & =\int_{\Omega}|(T f)(x)|^{2} d x=\int_{\Omega}\left|\int_{\Omega} g(x-y) f(y) d y\right|^{2} d x \\
& \leq \int_{\Omega}\left(\int_{\Omega}|g(x-y) f(y)| d y\right)^{2} d x \\
& \leq \int_{\Omega}\left(\int_{\Omega}|g(x-y)|^{2} d y\right)\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2} d x \\
& \leq \int_{\Omega}\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}^{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2} d x \leq|\Omega|\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}^{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}<\infty .
\end{aligned}
$$

(ii) Since the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ is weakly convergent, it is bounded (by BanachSteinhaus: $\exists C \in[0, \infty)$ such that $\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})} \leq C$ for every $k \in \mathbb{N}$. For every fixed $x_{0} \in \Omega$ and $k \in \mathbb{N}$, there holds

$$
\begin{aligned}
\left|\left(T f_{k}\right)\left(x_{0}\right)\right| & \leq \int_{\Omega}\left|g\left(x_{0}-y\right) f_{k}(y)\right| d y \leq\left(\int_{\Omega}\left|g\left(x_{0}-y\right)\right|^{2} d y\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|f_{k}(y)\right|^{2} d y\right)^{\frac{1}{2}} \\
& \leq\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})}
\end{aligned}
$$

In particular, the map $f_{k} \mapsto\left(T f_{k}\right)\left(x_{0}\right)$ is a linear continuous functional $L^{2}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$. Therefore, weak convergence $f_{k} \xrightarrow{w} f$ implies $\left(T f_{k}\right)\left(x_{0}\right) \rightarrow$ $(T f)\left(x_{0}\right)$ as $k \rightarrow \infty$. In other words, $T f_{k}$ converges pointwise to $T f$. Moreover,

$$
\sup _{k \in \mathbb{N}}\left|\left(T f_{k}\right)\left(x_{0}\right)\right| \leq \sup _{k \in \mathbb{N}}\left(\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})}\right) \leq C\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}
$$

Since Ω is bounded, the constant $C\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}$ on the right right hand side belongs $L^{2}(\Omega, \mathbb{R})$. Hence, the claim follows by Lebesgue's dominated convergence theorem.
(iii) Let T be as in Claim 1. Since $f_{k} \xrightarrow{w} f$ and $\left\|T f_{k}-T f\right\|_{L^{2}(\Omega, \mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$ by claim 2 , we conclude

$$
V\left(f_{k}\right)=\int_{\Omega} f_{k}(x) \int_{\Omega} g(x-y) f_{k}(y) d y d x=\left\langle f_{k}, T f_{k}\right\rangle_{L^{2}(\Omega)} \xrightarrow{k \rightarrow \infty}\langle f, T f\rangle=V(f),
$$

using the continuity property of scalar products proven in Exercise 6.3-(b).
(b) In the case that $0 \leq g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ and $h \in L^{2}(\Omega, \mathbb{R})$ the claim is that the map

$$
\begin{aligned}
E: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}+V(f)
\end{aligned}
$$

restricted to $L_{+}^{2}(\Omega, \mathbb{R})$ attains a global minimum. Since $L^{2}(\Omega, \mathbb{R})$ is reflexive (being a Hilbert space), we may invoke the direct method in the calculus of variations if we prove the following claims.
Claim 1. $L_{+}^{2}(\Omega, \mathbb{R})$ is non-empty and weakly sequentially closed.
Proof. Clearly, $L_{+}^{2}(\Omega, \mathbb{R}) \ni 0$ is non-empty. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L_{+}^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ for some $f \in L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Suppose $f \notin L_{+}^{2}(\Omega, \mathbb{R})$. Then there exists $U \subseteq \Omega$ with positive measure such that $\left.f\right|_{U}<0$. In particular, we can test the weak convergence with the characteristic function χ_{U} to obtain the contradiction

$$
0>\left\langle f, \chi_{U}\right\rangle_{L^{2}(\Omega, \mathbb{R})}=\lim _{k \rightarrow \infty}\left\langle f_{k}, \chi_{U}\right\rangle \geq 0
$$

Claim 2. E: $L_{+}^{2}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ is coercive and weakly sequentially lower semi-continuous.
Proof. Since $V(f) \geq 0$ if both $g \geq 0$ and $f \geq 0$ almost everywhere, we have

$$
\begin{aligned}
E(f) \geq\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2} & \geq\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-2\|f\|_{L^{2}(\Omega, \mathbb{R})}\|h\|_{L^{2}(\Omega, \mathbb{R})}+\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2} \\
& \geq \frac{1}{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2}
\end{aligned}
$$

for every $f \in L_{+}^{2}(\Omega, \mathbb{R})$ as we have by Young's inequality that $2 a b \leq \frac{1}{2} a^{2}+2 b^{2}$ for all $a, b \in \mathbb{R}$. Since $h \in L^{2}(\Omega, \mathbb{R})$ is fixed, E is coercive. By part (a), $L^{2}(\Omega, \mathbb{R}) \ni f \mapsto$ $V(f) \in \mathbb{R}$ is weakly sequentially lower semi-continuous. Moreover, every term on the right hand side of

$$
\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}=\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-2\langle f, h\rangle_{L^{2}(\Omega, \mathbb{R})}+\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2}
$$

is weakly sequentially lower semi-continuous in f since h is fixed. This proves the claim.

[^0]: Last modified: 18 November 2022

