Exercise 9.1 Let X be a normed vector space and $Y \subset X$ a closed subspace. Write $\pi: X \to X/Y$ for the projection map $\pi(x) := x + Y$. Show that $\pi^*: (X/Y)^* \to X^*$ is injective, $\pi^*(\lambda) \in Y^{\perp}$ for all $\lambda \in (X/Y)^*$, and π^* induces an isometric isomorphism $(X/Y)^* \to Y^{\perp}$.

Exercise 9.2 Let X, Y be Banach spaces over \mathbb{K} , and let $A \in L(X, Y)$. The goal of this exercise is to give a direct proof of the Theorem in class about the relationship between range and kernel of A and A^* .

- (a) Show that ker $A^* = (\operatorname{ran} A)^{\perp}$ and ker $A = {}^{\perp}(\operatorname{ran} A^*)$.
- (b) Suppose that A has closed range. Prove the following statements.
 - (i) There exists C such that for all $y \in \operatorname{ran} A$, there exists $x \in X$ with Ax = y and $||x|| \le C ||y||$.
 - (ii) Given $\lambda \in (\ker A)^{\perp}$, define $\mu \colon \operatorname{ran} A \to \mathbb{K}$ by $\mu(Ax) = \lambda(x)$. Prove that μ is well-defined. Then show using (i) that μ is continuous. Let $\tilde{\mu} \in Y^*$ be an extension of μ (using Hahn–Banach). Show that $A^*\tilde{\mu} = \lambda$.
 - (iii) Conclude that ran A^* is closed, and ran $A = {}^{\perp}(\ker A^*)$ as well as ran $A^* = (\ker A)^{\perp}$.

Exercise 9.3 Let $(H, (\cdot, \cdot))$ be a K-Hilbert space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), let T be a continuous linear operator on H with $||T||_{L(H)} \leq 1$, let $U := \ker(I - T)$ (where I is the identity operator on H), let P_U denote the orthogonal projection onto U and let $S_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$ for every $n \in \mathbb{N}$. Our goal is to show that

$$\limsup_{n \to \infty} \|S_n x - P_U x\|_H = 0 \qquad \forall x \in H.$$

For this, we recommend to proceed along the following steps:

- (a) For all $x \in H$, we have Tx = x if and only if $T^*x = x$.
- (b) $U^{\perp} = \overline{\operatorname{ran}(I-T)}.$
- (c) $\lim_{n \to +\infty} S_n x = x$ for all $x \in U$ and $\lim_{n \to +\infty} S_n x = 0$ for all $x \in U^{\perp}$.

Last modified: 18 November 2022

Exercise 9.4 Prove the following basic facts about compact operators.

- (a) Finite rank operators are compact.
- (b) If Y is a Hilbert space, then every compact operator $A \in L(X, Y)$ is a limit of finite rank operators.
- (c) Hilbert–Schmidt operators are compact.
- (d) Suppose X is reflexive, and $A \in L(X, Y)$. Suppose A maps every weakly convergent sequence into a norm convergent sequence. Show that A is compact.