Exercise 9.1 Let X be a normed vector space and $Y \subset X$ a closed subspace. Write $\pi: X \rightarrow X / Y$ for the projection map $\pi(x):=x+Y$. Show that $\pi^{*}:(X / Y)^{*} \rightarrow X^{*}$ is injective, $\pi^{*}(\lambda) \in Y^{\perp}$ for all $\lambda \in(X / Y)^{*}$, and π^{*} induces an isometric isomorphism $(X / Y)^{*} \rightarrow Y^{\perp}$.

Solution. First of all, we show that π^{*} is injective. Assume that $\lambda \in(X / Y)^{*}$ is such that $\pi^{*}(\lambda)=0$. This means that

$$
\left(\pi^{*}(\lambda)\right)(x)=\lambda(\pi(x))=0, \quad \forall x \in X
$$

But since π is surjective, this implies that $\lambda=0$ in $(X / Y)^{*}$. Since π^{*} is linear, this sufficies to show that π^{*} is injective.

In order o show that $\pi^{*}(\lambda) \in Y^{\perp}$ for all $\lambda \in(X / Y)^{*}$, we need to show that

$$
\pi^{*}(\lambda)(y)=\lambda(\pi(y))=0, \quad \forall x \in Y
$$

This is clear, because λ is linear and $\pi(y)=0+Y$ for every $y \in Y$.
Since $(X / Y)^{*}$ and X^{*} are Banach spaces (they are dual spaces) and we have already shown that π^{*} is injective, in order to show that π^{*} induces an isomorphism $(X / Y)^{*} \rightarrow Y^{\perp}$ we just need to show that π^{*} is surjective onto Y^{\perp}. Hence, pick any $\varphi \in Y^{\perp}$ and define

$$
\lambda(x+Y):=\varphi(x), \quad \forall x+Y \in(X / Y)^{*}
$$

Since $\varphi \in Y^{\perp}$, we have that λ is well-defined. Indeed, given $x_{1}, x_{2} \in X$ such that $x_{1}+Y=x_{2}+Y$, by definition there exists $y \in Y$ such that $x_{2}-x_{1}=y$. Hence

$$
\lambda\left(x_{1}+Y\right)=\varphi\left(x_{1}\right)=\varphi\left(x_{1}+y\right)=\varphi\left(x_{2}\right)=\lambda\left(x_{2}+Y\right) .
$$

Moreover, λ is continuous since

$$
|\lambda(x+Y)|=\left|\leq\left|\varphi\left(x^{\prime}\right)\right| \leq\|\varphi\|_{X^{*}}\left\|x^{\prime}\right\|_{X}, \quad \forall x^{\prime} \in X \text { s.t. } x+Y=x^{\prime}+Y .\right.
$$

By taking the infimum over the $x \in X$ such that $x+Y=x^{\prime}+Y$, the continuity of λ follows. Finally, notice that

$$
\left(\pi^{*}(\lambda)\right)(x)=\lambda(\pi(x))=\lambda(x+Y)=\varphi(x), \quad \forall x \in X
$$

The statement follows.

Exercise 9.2 Let X, Y be Banach spaces over \mathbb{K}, and let $A \in L(X, Y)$. The goal of this exercise is to give a direct proof of the Theorem in class about the relationship between range and kernel of A and A^{*}.

[^0](a) Show that $\operatorname{ker} A^{*}=(\operatorname{ran} A)^{\perp}$ and $\operatorname{ker} A={ }^{\perp}\left(\operatorname{ran} A^{*}\right)$.
(b) Suppose that A has closed range. Prove the following statements.
(i) There exists C such that for all $y \in \operatorname{ran} A$, there exists $x \in X$ with $A x=y$ and $\|x\| \leq C\|y\|$.
(ii) Given $\lambda \in(\operatorname{ker} A)^{\perp}$, define $\mu: \operatorname{ran} A \rightarrow \mathbb{K}$ by $\mu(A x)=\lambda(x)$. Prove that μ is well-defined. Then show using (i) that μ is continuous. Let $\tilde{\mu} \in Y^{*}$ be an extension of μ (using Hahn-Banach). Show that $A^{*} \tilde{\mu}=\lambda$.
(iii) Conclude that $\operatorname{ran} A^{*}$ is closed, and $\operatorname{ran} A={ }^{\perp}\left(\operatorname{ker} A^{*}\right)$ as well as ran $A^{*}=$ $(\operatorname{ker} A)^{\perp}$.

Solution.

(a) First, we show that $\operatorname{ker} A^{*}=(\operatorname{ran} A)^{\perp}$. Indeed, assume that $\lambda \in \operatorname{ker} A^{*} \subset Y^{*}$. This holds if and only if

$$
0=\left(A^{*}(\lambda)\right)(x)=\lambda(A(x)), \quad \forall x \in X
$$

Again, the previous equality occurs if and only if $\lambda(y)=0$ for every $y \in \operatorname{ran} A$, which is exactly as saying that $\lambda \in(\operatorname{ran} A)^{\perp}$. Hence, we have shown that ker $A^{*}=(\operatorname{ran} A)^{\perp}$.

Second, to see that $\operatorname{ker} A=^{\perp}\left(\operatorname{ran} A^{*}\right)$ we fix any $x \in \operatorname{ker} A$ and we notice that this holds if and only if $\left(A^{*}(\lambda)\right)(x)=\lambda(A(x))=0$ for every $\lambda \in Y^{*}$. But this is exactly as saying that $\mu(x)=0$ for every $\mu \in \operatorname{ran} A^{*}$, which simply means that $x \in{ }^{\perp}\left(\operatorname{ran} A^{*}\right)$. The statement follows.
(b)
(i) Since A is continuous, we have that ker A is closed. Since A has closed range, the operator $\tilde{A}: X / \operatorname{ker} A \rightarrow \operatorname{ran} A$ given by $\tilde{A}(x+\operatorname{ker} A)=A(x)$ for every $X \in X$ is a well-defined isomorphism between Banach spaces. In particular, \tilde{A} has a continuous inverse \tilde{A}^{-1}. Hence, there exists $C>0$ such that

$$
\left\|\tilde{A}^{-1} y\right\|_{X / \operatorname{ker} A} \leq C\|y\|_{Y}, \quad \forall y \in \operatorname{ran} A
$$

Recall that

$$
\left\|\tilde{A}^{-1} y\right\|_{X / \text { ker } A}=\inf \left\{\|x\|_{X} \text { with } A(x)=y\right\}
$$

In particular, by definition of infimum for every $y \in \operatorname{ran} A$ there exists $x \in X$ with $A(x)=y$ satisfying

$$
\|x\|_{X} \leq 2\left\|\tilde{A}^{-1} y\right\|_{X / \text { ker } A} \leq 2 C\|y\|_{Y}
$$

The statement follows.
(ii) To show that μ is well-defined, we notice that for every $x_{1}, x_{2} \in X$ such that $A x_{1}=A x_{2} \Leftrightarrow A\left(x_{1}-x_{2}\right)=0$ it holds that

$$
\mu\left(A x_{1}\right)=\lambda\left(x_{1}\right)=\lambda\left(x_{1}-x_{2}\right)+\lambda\left(x_{2}\right)=\lambda\left(x_{2}\right)=\mu\left(A x_{2}\right),
$$

since $\lambda \in(\operatorname{ker} A)^{\perp}$ and $x_{1}-x_{2} \in \operatorname{ker} A$.
In order to prove the continuity of μ, we notice that by (i) there exists $C>0$ such that for every $y \in \operatorname{ran} A$ we find $x \in X$ with $A x=y$ and $\|x\| \leq C\|y\|$. In particular, for this particular choice of x we have

$$
|\mu(y)|=|\mu(A x)|=|\lambda(x)| \leq\|\lambda\|_{Y^{*}}\|x\| \leq C\|\lambda\|_{Y^{*}}\|y\|, \quad \forall y \in \operatorname{ran} A .
$$

The continuity of μ follows.
Now assume that $\tilde{\mu}$ is some Hahn-Banach extension of μ to Y. We have

$$
\left(A^{*} \tilde{\mu}\right)(x)=\tilde{\mu}(A x)=\mu(A x)=\lambda(x), \quad \forall x \in X
$$

This shows that $A^{*} \tilde{\mu}=\lambda$.
(iii) By (ii), we immediately conclude that $(\operatorname{ker} A)^{\perp} \subset \operatorname{ran} A^{*}$. On the other hand, by (i) we have that

$$
(\operatorname{ker} A)^{\perp}=\left({ }^{\perp}\left(\operatorname{ran} A^{*}\right)\right)^{\perp}=\overline{\operatorname{ran} A^{*}} \supset \operatorname{ran} A^{*}
$$

Hence, we get that $(\operatorname{ker} A)^{\perp}=\operatorname{ran} A^{*}$. Since the ${ }^{\perp}$ of a subset is closed, we finally get that $\operatorname{ran} A^{*}$ is closed.

Moreover, since the $\operatorname{ran} A$ is closed, by (i) we have

$$
\operatorname{ran} A=\overline{\operatorname{ran} A}={ }^{\perp}\left((\operatorname{ran} A)^{\perp}\right)={ }^{\perp}\left(\operatorname{ker} A^{*}\right)
$$

Exercise 9.3 Let $(H,(\cdot, \cdot))$ be a \mathbb{K}-Hilbert space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), let T be a continuous linear operator on H with $\|T\|_{L(H)} \leq 1$, let $U:=\operatorname{ker}(I-T)$ (where I is the identity operator on H), let P_{U} denote the orthogonal projection onto U and let $S_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for every $n \in \mathbb{N}$. Our goal is to show that

$$
\limsup _{n \rightarrow \infty}\left\|S_{n} x-P_{U} x\right\|_{H}=0 \quad \forall x \in H
$$

For this, we recommend to proceed along the following steps:
(a) For all $x \in H$, we have $T x=x$ if and only if $T^{*} x=x$.
(b) $U^{\perp}=\overline{\operatorname{ran}(I-T)}$.
(c) $\lim _{n \rightarrow+\infty} S_{n} x=x$ for all $x \in U$ and $\lim _{n \rightarrow+\infty} S_{n} x=0$ for all $x \in U^{\perp}$.

Solution.

(a) " $\Rightarrow "$ Since $\left\|T^{*}\right\|_{L(H, H)}=\|T\|_{L(H, H)} \leq 1$, we have for all $x \in U$ (i.e. $x \in H$ with $T x=x$) that

$$
\|x\|_{H}\left\|T^{*} x\right\|_{H} \geq\left\langle x, T^{*} x\right\rangle=\langle T x, x\rangle=\|x\|_{H}^{2} \geq\|x\|_{H}\left\|T^{*} x\right\|_{H}
$$

which implies that $\left\|T^{*} x\right\|_{H}=\|x\|_{H}$ for all $x \in U$ (as well as $\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=$ $\|x\|_{H}^{2}$ for all $\left.x \in U\right)$. Hence, we have for all $x \in U$ that

$$
\left\|T^{*} x-x\right\|_{H}^{2}=\left\|T^{*} x\right\|_{H}^{2}-2 \operatorname{Re}\left\langle x, T^{*} x\right\rangle+\|x\|_{H}^{2}=\|x\|_{H}^{2}-2\|x\|_{H}^{2}+\|x\|_{H}^{2}=0 .
$$

Thus, $\operatorname{ker}(I-T) \subseteq \operatorname{ker}\left(I-T^{*}\right)$
$" \Leftarrow "$ As $T^{*} \in L(H, H)$ also satisfies $\left\|T^{*}\right\|_{L(H, H)} \leq 1$, the argument above shows for all $x \in \operatorname{ker}\left(I-T^{*}\right)$ that $T^{* *} x=x$. Since $T^{* *}=T$ for every bounded linear operator on a Hilbert space, we have that $\operatorname{ker}(I-T) \supseteq \operatorname{ker}\left(I-T^{*}\right)$.
(b) We know from (a) that $U=\operatorname{ker}(I-T)=\operatorname{ker}\left(I-T^{*}\right)$. Hence, it holds that

$$
U^{\perp}=\left(\operatorname{ker}\left(I-T^{*}\right)\right)^{\perp}=\left(\operatorname{ran}(I-T)^{\perp}\right)^{\perp}=\overline{\operatorname{ran}(I-T)}
$$

(c) For every $x \in U$, we have $T x=x$, hence $S_{n} x=x$ for all $n \in \mathbb{N}$ and therefore $\lim \sup _{n \rightarrow \infty}\left\|S_{n} x-x\right\|_{H}=0$. For every $x \in \operatorname{ran}(I-T)$, there exists $y \in H$ such that $x=(I-T) y$. Hence, it holds for all $n \in \mathbb{N}$ that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H} & =\limsup _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(y-T y)\right\|_{H} \\
& =\limsup _{n \rightarrow \infty}\left\|\frac{1}{n}\left(y-T^{n} y\right)\right\|_{H} \leq \limsup _{n \rightarrow \infty} \frac{2\|y\|_{H}}{n}=0
\end{aligned}
$$

For every $x \in \overline{\operatorname{ran}(I-T)}$, there is a sequence $\left(z_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{ran}(I-T)$ converging to x as $n \rightarrow \infty$ and since $S_{n} y_{k} \rightarrow 0$ as $n \rightarrow \infty$ for every $k \in \mathbb{N}$, we get that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H} & \leq \limsup _{n \rightarrow \infty}\left[\left\|S_{n} x-S_{n} y_{k}\right\|_{H}+\left\|S_{n} y_{k}\right\|_{H}\right] \\
& =\limsup _{n \rightarrow \infty}\left\|S_{n} x-S_{n} y_{k}\right\|_{H} \leq \limsup _{n \rightarrow \infty}\left[\left\|S_{n}\right\|_{L(H, H)}\left\|x-y_{k}\right\|_{H}\right] \\
& \leq\left\|x-y_{k}\right\|_{H} \quad \text { for all } k \in \mathbb{N} .
\end{aligned}
$$

Hence, $\lim \sup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H}=0$ for every $x \in \overline{\operatorname{ran}(I-T)}=U^{\perp}$. To come full circle, note that every $x \in H$ can be written as $x=\left(x-P_{U} x\right)+P_{U} x$, where $x-P_{U} x \in U^{\perp}$ and $P_{U} x \in U$, and therefore, we obtain for every $x \in H$ that $S_{n} x \rightarrow P_{U} x$ as $n \rightarrow \infty$ because $S_{n}\left(x-P_{U} x\right) \rightarrow 0$ and $S_{n} P_{U} x \rightarrow P_{U} x$ as $n \rightarrow \infty$.

Exercise 9.4 Prove the following basic facts about compact operators.
(a) Finite rank operators are compact.
(b) If Y is a Hilbert space, then every compact operator $A \in L(X, Y)$ is a limit of finite rank operators.
(c) Hilbert-Schmidt operators are compact.
(d) Suppose X is reflexive, and $A \in L(X, Y)$. Suppose A maps every weakly convergent sequence into a norm convergent sequence. Show that A is compact.

Solution.

(a) Let $T \in L(X, Y)$ be a finite rank operator. By continuity of T, we have that $T\left(B_{X}(0,1)\right)$ is a bounded subset of the finite dimensional vector space $\operatorname{ran} T$. In particular, $T\left(B_{X}(0,1)\right)$ is relatively compact by the Heine-Borel theorem and the statement follows.
(b) Let $A \in L(X, Y)$ be compact with Y Hilbert. Since $T\left(B_{X}(0,1)\right)$ is relatively compact in Y, it is totally bounded. This means that for every $n \in \mathbb{N}$ there exists a cover of $T\left(B_{X}(0,1)\right)$ by a finite number of open balls of radius $1 / n$ centered at the points $y_{1}^{n}, \ldots, y_{N(n)}^{n}$. Denote by P_{n} the orthogonal projection (this is where we use the fact that Y is Hilbert) on the finite-dimensional subspace $\operatorname{span}\left\{y_{1}^{n}, \ldots, y_{N(n)}^{n}\right\}$. Define $T_{n}:=P_{n} T$ for every $n \in \mathbb{N}$. Clearly, T_{n} is a finite rank operator for every $n \in \mathbb{N}$. Moreover, by construction, for every $n \in \mathbb{N}$ and for every $x \in B_{X}(0,1)$ there exists $y_{x} \in\left\{y_{1}^{n}, \ldots, y_{N(n)}^{n}\right\}$ such that

$$
\left\|T x-y_{x}\right\|_{Y} \leq \frac{1}{n}
$$

Hence,

$$
\begin{aligned}
\left\|T_{n} x-T x\right\|_{Y} & \leq\left\|T_{n} x-y_{x}\right\|_{Y}+\left\|T x-y_{x}\right\|_{Y} \\
& \leq\left\|P_{n}\left(T x-y_{x}\right)\right\|_{Y}+\left\|T x-y_{x}\right\|_{Y} \leq 2\left\|T x-y_{x}\right\|_{Y} \leq \frac{2}{n} .
\end{aligned}
$$

This implies that

$$
\left\|T_{n}-T\right\|_{L(X, Y)} \leq \frac{2}{n}, \quad \forall n \in \mathbb{N}
$$

The statement follows.
(c) Recall the definition of Hilbert-Schmidt operator from Exercise 6.1. Let T be HilbertSchmidt on the separable Hilbert space H and let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be a complete orthonormal basis for H. For every $n \in \mathbb{N}$, define the linear operator $T_{n}: H \rightarrow \operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \subset$ H by

$$
T_{n} x:=\sum_{k=0}^{n}\left(T e_{k}, e_{k}\right)_{H}\left(x, e_{k}\right)_{H} e_{k}, \quad \forall x \in H
$$

Clearly, each T_{n} is a finite rank operator. Moreover, we claim that $T_{n} \rightarrow T$ in $L(H, H)$ as $n \rightarrow+\infty$. Indeed, by Parseval's identity, we have

$$
\begin{aligned}
\left\|T_{n} x-T x\right\|_{H}^{2} & =\sum_{k=0}^{+\infty}\left|\left(T_{n} x-T x, e_{k}\right)_{H}\right|^{2}=\sum_{k=n+1}^{+\infty}\left|\left(T e_{k}, e_{k}\right)_{H}\right|^{2}\left|\left(x, e_{k}\right)_{H}\right|^{2} \\
& \leq\left(\sum_{k=n+1}^{+\infty}\left\|T e_{k}\right\|_{H}^{2}\right)\|x\|_{H}^{2}
\end{aligned}
$$

for every $x \in H$ and for every $n \in \mathbb{N}$. This implies that

$$
\left\|T_{n}-T\right\|_{L(H, H)} \leq \sum_{k=n+1}^{+\infty}\left\|T e_{k}\right\|_{H}^{2} \rightarrow 0 \quad(n \rightarrow+\infty)
$$

The statement follows.
(d) Pick any sequence $\left\{T x_{n}\right\}_{n \in \mathbb{N}}$ in $T_{X}\left(B_{X}(0,1)\right)$. Since $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset B_{X}(0,1)$ is bounded and X is reflexive, we have that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits a weakly converging subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$. But since T maps weakly converging sequences in strongly converging sequences we have that $\left\{T x_{n_{k}}\right\}_{k \in \mathbb{N}}$ is strongly convergent in Y. The statement follows.

[^0]: Last modified: 25 November 2022

