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Exercise 9.1 Let X be a normed vector space and Y ⊂ X a closed subspace. Write
π : X → X/Y for the projection map π(x) := x + Y . Show that π∗ : (X/Y )∗ → X∗

is injective, π∗(λ) ∈ Y ⊥ for all λ ∈ (X/Y )∗, and π∗ induces an isometric isomorphism
(X/Y )∗ → Y ⊥.

Solution. First of all, we show that π∗ is injective. Assume that λ ∈ (X/Y )∗ is such
that π∗(λ) = 0. This means that

(π∗(λ))(x) = λ(π(x)) = 0, ∀ x ∈ X.

But since π is surjective, this implies that λ = 0 in (X/Y )∗. Since π∗ is linear, this
sufficies to show that π∗ is injective.

In order o show that π∗(λ) ∈ Y ⊥ for all λ ∈ (X/Y )∗, we need to show that

π∗(λ)(y) = λ(π(y)) = 0, ∀ x ∈ Y.

This is clear, because λ is linear and π(y) = 0 + Y for every y ∈ Y .

Since (X/Y )∗ and X∗ are Banach spaces (they are dual spaces) and we have already
shown that π∗ is injective, in order to show that π∗ induces an isomorphism (X/Y )∗ → Y ⊥

we just need to show that π∗ is surjective onto Y ⊥. Hence, pick any φ ∈ Y ⊥ and define

λ(x + Y ) := φ(x), ∀ x + Y ∈ (X/Y )∗.

Since φ ∈ Y ⊥, we have that λ is well-defined. Indeed, given x1, x2 ∈ X such that
x1 + Y = x2 + Y , by definition there exists y ∈ Y such that x2 − x1 = y. Hence

λ(x1 + Y ) = φ(x1) = φ(x1 + y) = φ(x2) = λ(x2 + Y ).

Moreover, λ is continuous since

|λ(x + Y )| = |≤ |φ(x′)| ≤ ∥φ∥X∗∥x′∥X , ∀ x′ ∈ X s.t. x + Y = x′ + Y.

By taking the infimum over the x ∈ X such that x + Y = x′ + Y , the continuity of λ
follows. Finally, notice that

(π∗(λ))(x) = λ(π(x)) = λ(x + Y ) = φ(x), ∀x ∈ X.

The statement follows.

Exercise 9.2 Let X, Y be Banach spaces over K, and let A ∈ L(X, Y ). The goal of this
exercise is to give a direct proof of the Theorem in class about the relationship between
range and kernel of A and A∗.
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(a) Show that ker A∗ = (ran A)⊥ and ker A = ⊥(ran A∗).

(b) Suppose that A has closed range. Prove the following statements.

(i) There exists C such that for all y ∈ ran A, there exists x ∈ X with Ax = y and
∥x∥ ≤ C∥y∥.

(ii) Given λ ∈ (ker A)⊥, define µ : ran A → K by µ(Ax) = λ(x). Prove that µ is
well-defined. Then show using (i) that µ is continuous. Let µ̃ ∈ Y ∗ be an
extension of µ (using Hahn–Banach). Show that A∗µ̃ = λ.

(iii) Conclude that ran A∗ is closed, and ran A = ⊥(ker A∗) as well as ran A∗ =
(ker A)⊥.

Solution.

(a) First, we show that ker A∗ = (ran A)⊥. Indeed, assume that λ ∈ ker A∗ ⊂ Y ∗. This
holds if and only if

0 = (A∗(λ))(x) = λ(A(x)), ∀ x ∈ X.

Again, the previous equality occurs if and only if λ(y) = 0 for every y ∈ ran A, which
is exactly as saying that λ ∈ (ran A)⊥. Hence, we have shown that ker A∗ = (ran A)⊥.

Second, to see that ker A = ⊥(ran A∗) we fix any x ∈ ker A and we notice that this
holds if and only if (A∗(λ))(x) = λ(A(x)) = 0 for every λ ∈ Y ∗. But this is exactly as
saying that µ(x) = 0 for every µ ∈ ran A∗, which simply means that x ∈ ⊥(ran A∗).
The statement follows.

(b)

(i) Since A is continuous, we have that ker A is closed. Since A has closed range,
the operator Ã : X/ ker A → ran A given by Ã(x + ker A) = A(x) for every
X ∈ X is a well-defined isomorphism between Banach spaces. In particular, Ã
has a continuous inverse Ã−1. Hence, there exists C > 0 such that

∥Ã−1y∥X/ ker A ≤ C∥y∥Y , ∀ y ∈ ran A.

Recall that

∥Ã−1y∥X/ ker A = inf{∥x∥X with A(x) = y}.

In particular, by definition of infimum for every y ∈ ran A there exists x ∈ X
with A(x) = y satisfying

∥x∥X ≤ 2∥Ã−1y∥X/ ker A ≤ 2C∥y∥Y .

The statement follows.
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(ii) To show that µ is well-defined, we notice that for every x1, x2 ∈ X such that
Ax1 = Ax2 ⇔ A(x1 − x2) = 0 it holds that

µ(Ax1) = λ(x1) = λ(x1 − x2) + λ(x2) = λ(x2) = µ(Ax2),

since λ ∈ (ker A)⊥ and x1 − x2 ∈ ker A.

In order to prove the continuity of µ, we notice that by (i) there exists C > 0
such that for every y ∈ ran A we find x ∈ X with Ax = y and ∥x∥ ≤ C∥y∥. In
particular, for this particular choice of x we have

|µ(y)| = |µ(Ax)| = |λ(x)| ≤ ∥λ∥Y ∗∥x∥ ≤ C∥λ∥Y ∗∥y∥, ∀ y ∈ ran A.

The continuity of µ follows.

Now assume that µ̃ is some Hahn-Banach extension of µ to Y . We have

(A∗µ̃)(x) = µ̃(Ax) = µ(Ax) = λ(x), ∀ x ∈ X.

This shows that A∗µ̃ = λ.

(iii) By (ii), we immediately conclude that (ker A)⊥ ⊂ ran A∗. On the other hand,
by (i) we have that

(ker A)⊥ = (⊥(ran A∗))⊥ = ran A∗ ⊃ ran A∗.

Hence, we get that (ker A)⊥ = ran A∗. Since the ⊥ of a subset is closed, we
finally get that ran A∗ is closed.

Moreover, since the ran A is closed, by (i) we have

ran A = ran A = ⊥((ran A)⊥) = ⊥(ker A∗).

Exercise 9.3 Let (H, ( ·, · )) be a K-Hilbert space (with K ∈ {R,C}), let T be a
continuous linear operator on H with ∥T∥L(H) ≤ 1, let U := ker(I − T ) (where I is
the identity operator on H), let PU denote the orthogonal projection onto U and let
Sn := 1

n

∑n−1
k=0 T k for every n ∈ N. Our goal is to show that

lim sup
n→∗∞

∥Snx − PUx∥H = 0 ∀ x ∈ H.

For this, we recommend to proceed along the following steps:
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(a) For all x ∈ H, we have Tx = x if and only if T ∗x = x.

(b) U⊥ = ran(I − T ).

(c) lim
n→+∞

Snx = x for all x ∈ U and lim
n→+∞

Snx = 0 for all x ∈ U⊥.

Solution.

(a) ”⇒” Since ∥T ∗∥L(H,H) = ∥T∥L(H,H) ≤ 1, we have for all x ∈ U (i.e. x ∈ H with
Tx = x) that

∥x∥H ∥T ∗x∥H ≥ ⟨x, T ∗x⟩ = ⟨Tx, x⟩ = ∥x∥2
H ≥ ∥x∥H ∥T ∗x∥H ,

which implies that ∥T ∗x∥H = ∥x∥H for all x ∈ U (as well as ⟨Tx, x⟩ = ⟨x, T ∗x⟩ =
∥x∥2

H for all x ∈ U). Hence, we have for all x ∈ U that

∥T ∗x − x∥2
H = ∥T ∗x∥2

H − 2 Re ⟨x, T ∗x⟩ + ∥x∥2
H = ∥x∥2

H − 2∥x∥2
H + ∥x∥2

H = 0.

Thus, ker(I − T ) ⊆ ker (I − T ∗)

”⇐” As T ∗ ∈ L(H, H) also satisfies ∥T ∗∥L(H,H) ≤ 1, the argument above shows for
all x ∈ ker (I − T ∗) that T ∗∗x = x. Since T ∗∗ = T for every bounded linear operator
on a Hilbert space, we have that ker(I − T ) ⊇ ker (I − T ∗).

(b) We know from (a) that U = ker(I − T ) = ker (I − T ∗). Hence, it holds that

U⊥ = (ker (I − T ∗))⊥ =
(
ran(I − T )⊥

)⊥
= ran(I − T )

(c) For every x ∈ U , we have Tx = x, hence Snx = x for all n ∈ N and therefore
lim supn→∞ ∥Snx − x∥H = 0. For every x ∈ ran(I − T ), there exists y ∈ H such that
x = (I − T )y. Hence, it holds for all n ∈ N that

lim sup
n→∞

∥Snx∥H = lim sup
n→∞

∥∥∥∥∥ 1
n

n−1∑
k=0

T k(y − Ty)
∥∥∥∥∥

H

= lim sup
n→∞

∥∥∥∥ 1
n

(y − T ny)
∥∥∥∥

H
≤ lim sup

n→∞

2∥y∥H

n
= 0.

For every x ∈ ran(I − T ), there is a sequence (zn)n∈N ⊆ ran(I − T ) converging to x
as n → ∞ and since Snyk → 0 as n → ∞ for every k ∈ N, we get that
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lim sup
n→∞

∥Snx∥H ≤ lim sup
n→∞

[∥Snx − Snyk∥H + ∥Snyk∥H ]

= lim sup
n→∞

∥Snx − Snyk∥H ≤ lim sup
n→∞

[
∥Sn∥L(H,H) ∥x − yk∥H

]
≤ ∥x − yk∥H for all k ∈ N.

Hence, lim supn→∞ ∥Snx∥H = 0 for every x ∈ ran(I − T ) = U⊥. To come full circle,
note that every x ∈ H can be written as x = (x − PUx) + PUx, where x − PUx ∈ U⊥

and PUx ∈ U , and therefore, we obtain for every x ∈ H that Snx → PUx as n → ∞
because Sn (x − PUx) → 0 and SnPUx → PUx as n → ∞.

Exercise 9.4 Prove the following basic facts about compact operators.

(a) Finite rank operators are compact.

(b) If Y is a Hilbert space, then every compact operator A ∈ L(X, Y ) is a limit of finite
rank operators.

(c) Hilbert–Schmidt operators are compact.

(d) Suppose X is reflexive, and A ∈ L(X, Y ). Suppose A maps every weakly convergent
sequence into a norm convergent sequence. Show that A is compact.

Solution.

(a) Let T ∈ L(X, Y ) be a finite rank operator. By continuity of T , we have that
T (BX(0, 1)) is a bounded subset of the finite dimensional vector space ran T . In
particular, T (BX(0, 1)) is relatively compact by the Heine-Borel theorem and the
statement follows.

(b) Let A ∈ L(X, Y ) be compact with Y Hilbert. Since T (BX(0, 1)) is relatively compact
in Y , it is totally bounded. This means that for every n ∈ N there exists a cover of
T (BX(0, 1)) by a finite number of open balls of radius 1/n centered at the points
yn

1 , ..., yn
N(n). Denote by Pn the orthogonal projection (this is where we use the fact

that Y is Hilbert) on the finite-dimensional subspace span{yn
1 , ..., yn

N(n)}. Define
Tn := PnT for every n ∈ N. Clearly, Tn is a finite rank operator for every n ∈ N.
Moreover, by construction, for every n ∈ N and for every x ∈ BX(0, 1) there exists
yx ∈ {yn

1 , ..., yn
N(n)} such that

∥Tx − yx∥Y ≤ 1
n

.
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Hence,

∥Tnx − Tx∥Y ≤ ∥Tnx − yx∥Y + ∥Tx − yx∥Y

≤ ∥Pn(Tx − yx)∥Y + ∥Tx − yx∥Y ≤ 2∥Tx − yx∥Y ≤ 2
n

.

This implies that

∥Tn − T∥L(X,Y ) ≤ 2
n

, ∀ n ∈ N.

The statement follows.

(c) Recall the definition of Hilbert-Schmidt operator from Exercise 6.1. Let T be Hilbert-
Schmidt on the separable Hilbert space H and let {ei}i∈N be a complete orthonormal
basis for H. For every n ∈ N, define the linear operator Tn : H → span{e1, ..., en} ⊂
H by

Tnx :=
n∑

k=0
(Tek, ek)H(x, ek)Hek, ∀ x ∈ H.

Clearly, each Tn is a finite rank operator. Moreover, we claim that Tn → T in
L(H, H) as n → +∞. Indeed, by Parseval’s identity, we have

∥Tnx − Tx∥2
H =

+∞∑
k=0

|(Tnx − Tx, ek)H |2 =
+∞∑

k=n+1
|(Tek, ek)H |2|(x, ek)H |2

≤
( +∞∑

k=n+1
∥Tek∥2

H

)
∥x∥2

H

for every x ∈ H and for every n ∈ N. This implies that

∥Tn − T∥L(H,H) ≤
+∞∑

k=n+1
∥Tek∥2

H → 0 (n → +∞).

The statement follows.

(d) Pick any sequence {Txn}n∈N in TX(BX(0, 1)). Since {xn}n∈N ⊂ BX(0, 1) is bounded
and X is reflexive, we have that {xn}n∈N admits a weakly converging subsequence
{xnk

}k∈N. But since T maps weakly converging sequences in strongly converging
sequences we have that {Txnk

}k∈N is strongly convergent in Y . The statement
follows.

6 6/6


