D-MATH Prof. Dr. Joaquim Serra

Differential Geometry I

Exercise Sheet 1

1. Arc length

Let $c \in C^1([0,1], \mathbb{R}^n)$. Show that the metric definition of arc length coincides with $L(c) := \int_0^1 |c'(t)| dt$.

2. Osculating circle

Let $c \in C^2(I, \mathbb{R}^2)$ be a curve parametrized by arc length. A circle $S \subset \mathbb{R}^2$ with center $q \in \mathbb{R}^2$ and radius $r \ge 0$ is called *osculating circle* to c at the point $t \in I$ if S coincides with c at the point c(t) up to second order.

Show that if $c''(t) \neq 0$ then there is a unique osculating circle S to c at the point t. Find q, r and a parametrization α of S with $\alpha(t) = c(t), \alpha'(t) = c'(t)$ and $\alpha''(t) = c''(t)$.

3. Curvature and torsion

a) Let $c \in C^3(I, \mathbb{R}^3)$ be a Frenet curve. Show that for the curvature κ and the torsion τ of c it holds that:

$$\kappa = \frac{|c' \times c''|}{|c'|^3} \qquad \text{ and } \qquad \tau = \frac{\det(c',c'',c''')}{|c' \times c''|^2}.$$

b) Let r, h > 0 and denote by σ the following reflection of \mathbb{R}^3 :

 $\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (x, y, -z).$

Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of the following Helixes:

$$c_{1}(t) = (r \cos t, r \sin t, \frac{h}{2\pi}t),$$

$$c_{2}(t) = c_{1}(-t),$$

$$c_{3}(t) = \sigma \circ c_{1}(t).$$