Exercise Sheet 1

1. Arc length

Let $c \in C^{1}\left([0,1], \mathbb{R}^{n}\right)$. Show that the metric definition of arc length coincides with $L(c):=\int_{0}^{1}\left|c^{\prime}(t)\right| \mathrm{d} t$.

2. Osculating circle

Let $c \in C^{2}\left(I, \mathbb{R}^{2}\right)$ be a curve parametrized by arc length. A circle $S \subset \mathbb{R}^{2}$ with center $q \in \mathbb{R}^{2}$ and radius $r \geq 0$ is called osculating circle to c at the point $t \in I$ if S coincides with c at the point $c(t)$ up to second order.
Show that if $c^{\prime \prime}(t) \neq 0$ then there is a unique osculating circle S to c at the point t. Find q, r and a parametrization α of S with $\alpha(t)=c(t), \alpha^{\prime}(t)=c^{\prime}(t)$ and $\alpha^{\prime \prime}(t)=c^{\prime \prime}(t)$.

3. Curvature and torsion

a) Let $c \in C^{3}\left(I, \mathbb{R}^{3}\right)$ be a Frenet curve. Show that for the curvature κ and the torsion τ of c it holds that:

$$
\kappa=\frac{\left|c^{\prime} \times c^{\prime \prime}\right|}{\left|c^{\prime}\right|^{3}} \quad \text { and } \quad \tau=\frac{\operatorname{det}\left(c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}\right)}{\left|c^{\prime} \times c^{\prime \prime}\right|^{2}}
$$

b) Let $r, h>0$ and denote by σ the following reflection of \mathbb{R}^{3} :

$$
\sigma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto(x, y,-z)
$$

Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of the following Helixes:

$$
\begin{aligned}
& c_{1}(t)=\left(r \cos t, r \sin t, \frac{h}{2 \pi} t\right), \\
& c_{2}(t)=c_{1}(-t), \\
& c_{3}(t)=\sigma \circ c_{1}(t) .
\end{aligned}
$$

