Exercise Sheet 11

For each of the following multiple choice questions, choose the correct answer.

1. The radius of the osculating circle at a point of the helix $c(t):=(r \cos t, r \sin t, t)$ is:
(a) $\frac{r}{1+r^{2}}$.
(b) $\frac{1+r^{2}}{r}$.
(c) r.
(d) $\frac{1}{r}$.
(e) $\frac{\sqrt{1+r^{2}}}{r}$.
2. Let M be a smooth surface in \mathbb{R}^{3} with Gauss curvature K and mean curvature H. Which of the following relations is always true?
(a) $H \geq K$.
(b) $H \leq K$.
(c) $H^{2} \leq K$.
(d) $H^{2} \geq K$.
(e) $H^{2}=K^{2}$.
3. Consider the following curve in \mathbb{R}^{3} :

$$
\gamma(t)=(3 \cos (t / 5), 4 \cos (t / 5), 5 \sin (t / 5))
$$

Which of the following vectors is the binormal B of γ ?
(a) $\left(\frac{4}{5},-\frac{3}{5}, 0\right)$.
(b) $\left(0, \frac{4}{5},-\frac{3}{5}\right)$.
(c) $(1,0,0)$.
(d) $\left(-\frac{3}{5}, \frac{4}{5}\right)$.
(e) $\left(-\frac{3}{5} \sin \left(\frac{t}{5}\right),-\frac{4}{5} \sin \left(\frac{t}{5}\right), \cos \left(\frac{t}{5}\right)\right)$.
4. Let $C \subset \mathbb{R}^{3}$ be the cylinder in \mathbb{R}^{3}, parametrized as

$$
f(u, v)=(\cos (u), \sin (u), v) .
$$

What are the correct values of the Gauss curvature K and mean curvature H at the point $(\sqrt{2} / 2, \sqrt{2} / 2,100) \in C$ (with respect to the outward pointing Gauss map) ?
(a) $K=0, H=0$.
(b) $K=0, H=-\frac{1}{2}$.
(c) $K=-1, H=0$.
(d) $K=0, H=1$.
(e) $K=1, H=-1$.
5. Consider a "quadrilateral" region of area A in a 2-sphere of radius r (connected region bounded by four great circular arcs). The sum of its interior angles is:
(a) $2 \pi-A / r^{2}$.
(b) $\pi-A$.
(c) $2 \pi+A / r^{2}$.
(d) $2 \pi r^{2}+A$.
(e) $2 \pi\left(1+A / r^{2}\right)$.
6. Let $M \subset \mathbb{R}^{3}$ be the following smooth surface:

What is the degree of the outward pointing normal red vector field X ?
(a) $\operatorname{deg}(X)=0$.
(b) $\operatorname{deg}(X)=1$.
(c) $\operatorname{deg}(X)=2$.
(d) $\operatorname{deg}(X)=-1$.
(e) $\operatorname{deg}(X)=-2$.
7. Consider the torus of revolution $f(x, y)=(\cos x(-R+r \cos y), \sin x(-R+r \cos y), r \sin y)$, $R>r$, drawn below:

Its Gauss' curvatures at $p=(-R-r, 0,0)$ and $p^{\prime}=(-R+r, 0,0)$ are
(a) $\frac{1}{r \sqrt{R^{2}+r^{2}}}$ and $\frac{-1}{r \sqrt{R^{2}-r^{2}}}$, resp.
(b) $\frac{1}{r R}$ and $\frac{-1}{r R}$, resp.
(c) Both equal, in absolute value, to $\frac{1}{\sqrt{r R}}$.
(d) Both equal, in absolute value, to $\frac{1}{r R}$.
(e) $\frac{1}{r(R+r)}$ and $\frac{-1}{r(R-r)}$, resp.
8. Consider again the torus from question 7. The mean curvature at the point $q=(-R+$ $r \cos \alpha, 0, r \sin \alpha$) with respect to the outwards normal (pointing towards the unbounded component of $\left.\mathbb{R}^{3} \backslash f\left([0,2 \pi]^{2}\right)\right)$ is:
(a) $\frac{1}{2}\left(-\frac{1}{r}+\frac{1}{R-r \cos \alpha}\right)$.
(b) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\sin \alpha}{R-r \cos \alpha}\right)$.
(c) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\tan \alpha}{R-r}\right)$.
(d) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\cos \alpha}{R-r \cos \alpha}\right)$.
(e) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\tan \alpha}{R+r}\right)$.
9. Consinder again the torus from question 7 . When the point q is rotated about the x_{3} axis it generates the curve $\gamma(t)=(\cos t(-R+r \cos \alpha)$, $\sin t(-R+r \cos \alpha), r \sin \alpha)$, which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn $(t \in[0,2 \pi])$, producing a new tangent vector Y at q. The angle between X and Y is:
(a) $\frac{\alpha R}{r}$.
(b) $2 \pi \sin \alpha$.
(c) $\frac{\tan \alpha R}{r}$.
(d) $2 \pi \cos \alpha$.
(e) $\sin \alpha$.
10. Consider a smooth surface S obtained by gluing a torus (minus a disk) and a rectangular piece of plane (minus a disk), as in the figure. While the torus part was stretched in order to be tangent to the plane, the planar part was kept exactly flat.

Then $\int_{S} K d A$ is
(a) 4π.
(b) -4π.
(c) 2π.
(d) -2π.
(e) It depends on the curve bounding the planar piece of surface

