Exercise Sheet 11

For each of the following multiple choice questions, choose the correct answer.

- **1.** The radius of the osculating circle at a point of the helix $c(t) := (r \cos t, r \sin t, t)$ is:
- (a) $\frac{r}{1+r^2}$.
- (b) $\frac{1+r^2}{r}$.
- (c) r.
- (d) $\frac{1}{r}$.
- (e) $\frac{\sqrt{1+r^2}}{r}$.

2. Let M be a smooth surface in \mathbb{R}^3 with Gauss curvature K and mean curvature H. Which of the following relations is always true?

- (a) $H \ge K$.
- (b) $H \leq K$.
- (c) $H^2 \leq K$.
- (d) $H^2 \ge K$.
- (e) $H^2 = K^2$.

D-MATH

Prof. Dr. Joaquim Serra

3. Consider the following curve in \mathbb{R}^3 :

 $\gamma(t) = (3\cos(t/5), 4\cos(t/5), 5\sin(t/5)).$

Which of the following vectors is the binormal B of γ ?

- (a) $(\frac{4}{5}, -\frac{3}{5}, 0).$
- (b) $(0, \frac{4}{5}, -\frac{3}{5}).$
- (c) (1, 0, 0).
- (d) $(-\frac{3}{5},\frac{4}{5}).$
- (e) $\left(-\frac{3}{5}\sin(\frac{t}{5}), -\frac{4}{5}\sin(\frac{t}{5}), \cos(\frac{t}{5})\right)$.

4. Let $C \subset \mathbb{R}^3$ be the cylinder in \mathbb{R}^3 , parametrized as

$$f(u,v) = \big(\cos(u), \sin(u), v\big).$$

What are the correct values of the Gauss curvature K and mean curvature H at the point $(\sqrt{2}/2, \sqrt{2}/2, 100) \in C$ (with respect to the outward pointing Gauss map) ?

- (a) K = 0, H = 0.
- (b) $K = 0, H = -\frac{1}{2}.$
- (c) K = -1, H = 0.
- (d) K = 0, H = 1.
- (e) K = 1, H = -1.

5. Consider a "quadrilateral" region of area A in a 2-sphere of radius r (connected region bounded by four great circular arcs). The sum of its interior angles is:

- (a) $2\pi A/r^2$.
- (b) πA .
- (c) $2\pi + A/r^2$.
- (d) $2\pi r^2 + A$.
- (e) $2\pi(1+A/r^2)$.
- **6.** Let $M \subset \mathbb{R}^3$ be the following smooth surface:

What is the degree of the outward pointing normal red vector field X?

- (a) $\deg(X) = 0.$
- (b) $\deg(X) = 1.$
- (c) $\deg(X) = 2.$
- (d) $\deg(X) = -1.$
- (e) $\deg(X) = -2.$

7. Consider the torus of revolution $f(x, y) = (\cos x(-R+r\cos y), \sin x(-R+r\cos y), r\sin y), R > r$, drawn below:

Its Gauss' curvatures at p = (-R - r, 0, 0) and p' = (-R + r, 0, 0) are

- (a) $\frac{1}{r\sqrt{R^2+r^2}}$ and $\frac{-1}{r\sqrt{R^2-r^2}}$, resp.
- (b) $\frac{1}{rR}$ and $\frac{-1}{rR}$, resp.
- (c) Both equal, in absolute value, to $\frac{1}{\sqrt{rR}}$.
- (d) Both equal, in absolute value, to $\frac{1}{rR}$.

(e)
$$\frac{1}{r(R+r)}$$
 and $\frac{-1}{r(R-r)}$, resp.

8. Consider again the torus from question 7. The mean curvature at the point $q = (-R + r \cos \alpha, 0, r \sin \alpha)$ with respect to the outwards normal (pointing towards the unbounded component of $\mathbb{R}^3 \setminus f([0, 2\pi]^2)$) is:

- (a) $\frac{1}{2}\left(-\frac{1}{r}+\frac{1}{R-r\cos\alpha}\right)$.
- (b) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\sin\alpha}{R-r\cos\alpha}\right).$
- (c) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\tan\alpha}{R-r}\right)$.
- (d) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\cos\alpha}{R-r\cos\alpha}\right).$
- (e) $\frac{1}{2}\left(-\frac{1}{r}+\frac{\tan\alpha}{R+r}\right)$.

9. Consider again the torus from question 7. When the point q is rotated about the x_3 axis it generates the curve $\gamma(t) = (\cos t(-R + r \cos \alpha), \sin t(-R + r \cos \alpha), r \sin \alpha)$, which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn ($t \in [0, 2\pi]$), producing a new tangent vector Y at q. The angle between X and Y is:

- (a) $\frac{\alpha R}{r}$.
- (b) $2\pi \sin \alpha$.
- (c) $\frac{\tan \alpha R}{r}$.
- (d) $2\pi \cos \alpha$.
- (e) $\sin \alpha$.

10. Consider a smooth surface S obtained by gluing a torus (minus a disk) and a rectangular piece of plane (minus a disk), as in the figure. While the torus part was stretched in order to be tangent to the plane, the planar part was kept exactly flat.

Then $\int_{S} K dA$ is

- (a) 4π .
- (b) -4π .
- (c) 2π .
- (d) -2π .
- (e) It depends on the curve bounding the planar piece of surface