Exercise Sheet 2

1. Characterization of convex curves

Let $c \in C^{2}\left([0, L], \mathbb{R}^{2}\right)$ be a simply C^{2}-closed curve parametrized by arc-length. Show that the following two statements are equivalent:
(i) The curvature $\kappa_{\text {or }}$ of c doesn't change sign, that is, $\kappa_{\text {or }}(t) \geq 0$ for all $t \in[0, L]$ or $\kappa_{\text {or }} \leq 0$ for all $t \in[0, L]$.
(ii) The curve c is convex, that is, the image of c is the boundary of a convex subset $C \subset \mathbb{R}^{2}$.

2. Submanifolds

Prove that the following matrix groups are submanifolds of $\mathbb{R}^{n \times n}$:
(i) $\operatorname{SL}(n, \mathbb{R}):=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det} A=1\right\}$,
(ii) $\operatorname{SO}(n, \mathbb{R}):=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{-1}=A^{\mathrm{T}}, \operatorname{det} A=1\right\}$.

3. Tangent bundle

Let $M \subset \mathbb{R}^{n}$ be an m-dimensional submanifold. Show that the tangent bundle

$$
T M:=\bigcup_{p \in M}\{p\} \times T M_{p}
$$

is a $2 m$-dimensional submanifold of $\mathbb{R}^{2 n}$.

