Exercise Sheet 3

1. Differentiability

Let $M \subset \mathbb{R}^{n}$ be an m-dimensional submanifold, $F: M \longrightarrow \mathbb{R}^{k}$ a map and $p \in M$. Show that the following statements are equivalent.
(i) F is differentiable in p (as defined in the lecture).
(ii) There exist an open neighborhood V of p in \mathbb{R}^{n} and a map $\bar{F}: V \longrightarrow \mathbb{R}^{k}$ differentiable in p with

$$
\left.\bar{F}\right|_{V \cap M}=\left.F\right|_{V \cap M} .
$$

2. Orientability

(i) Let $W \subset \mathbb{R}^{n}$ be an open set, $f: W \longrightarrow \mathbb{R}$ a C^{1}-map and $y \in \mathbb{R}$ a regular value of f. Prove that $M:=f^{-1}(\{y\})$ is an orientable submanifold.
(ii) Prove that the submanifolds $\mathrm{SL}(n, \mathbb{R})$ and $\mathrm{SO}(n, \mathbb{R})$ are orientable.

3. Angle-preserving parametrization

Let $U \subset \mathbb{R}^{m}$ be an open set and $f: U \longrightarrow \mathbb{R}^{n}$ an immersion. The map f is called angle-preserving if for all $x \in U$ and $\xi, \eta \in T U_{x}$ the angles between ξ, η and $d f_{x}(\xi), d f_{x}(\eta)$ coincide. Here the angles are meant with respect to the standard scalar products on \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.
(i) Show that f is angle-preserving if and only if $g_{i j}=\lambda^{2} \delta_{i j}$, where $g_{i j}$ is the matrix of the first fundamental form of $f, \delta_{i j}$ is the Kronecker delta and $\lambda: U \longrightarrow \mathbb{R}$ is a differentiable function.
(ii) Find an angle-preserving parametrization of the 2-sphere without North and South Pole, $S^{2} \backslash\{N, S\} \subset \mathbb{R}^{3}$, of the form

$$
f(x, y)=\left(\sqrt{1-h^{2}(y)} \cos (x), \sqrt{1-h^{2}(y)} \sin (x), h(y)\right)
$$

where $h: \mathbb{R} \longrightarrow \mathbb{R}$ is an odd function.

