Exercise Sheet 3

1. Differentiability

Let $M \subset \mathbb{R}^n$ be an *m*-dimensional submanifold, $F: M \longrightarrow \mathbb{R}^k$ a map and $p \in M$. Show that the following statements are equivalent.

- (i) F is differentiable in p (as defined in the lecture).
- (ii) There exist an open neighborhood V of p in \mathbb{R}^n and a map $\overline{F} \colon V \longrightarrow \mathbb{R}^k$ differentiable in p with

$$\bar{F}|_{V\cap M} = F|_{V\cap M}.$$

2. Orientability

- (i) Let $W \subset \mathbb{R}^n$ be an open set, $f: W \longrightarrow \mathbb{R}$ a C^1 -map and $y \in \mathbb{R}$ a regular value of f. Prove that $M \coloneqq f^{-1}(\{y\})$ is an orientable submanifold.
- (ii) Prove that the submanifolds $SL(n, \mathbb{R})$ and $SO(n, \mathbb{R})$ are orientable.

3. Angle-preserving parametrization

Let $U \subset \mathbb{R}^m$ be an open set and $f: U \longrightarrow \mathbb{R}^n$ an immersion. The map f is called *angle-preserving* if for all $x \in U$ and $\xi, \eta \in TU_x$ the angles between ξ, η and $df_x(\xi), df_x(\eta)$ coincide. Here the angles are meant with respect to the standard scalar products on \mathbb{R}^m and \mathbb{R}^n , respectively.

- (i) Show that f is angle-preserving if and only if $g_{ij} = \lambda^2 \delta_{ij}$, where g_{ij} is the matrix of the first fundamental form of f, δ_{ij} is the Kronecker delta and $\lambda: U \longrightarrow \mathbb{R}$ is a differentiable function.
- (ii) Find an angle-preserving parametrization of the 2-sphere without North and South Pole, $S^2 \setminus \{N, S\} \subset \mathbb{R}^3$, of the form

$$f(x,y) = \left(\sqrt{1 - h^2(y)}\cos(x), \sqrt{1 - h^2(y)}\sin(x), h(y)\right),\$$

where $h \colon \mathbb{R} \longrightarrow \mathbb{R}$ is an odd function.