Exercise Sheet 4

1. Tubular surface

Let $c:[0, L] \rightarrow \mathbb{R}^{3}$ be a smooth Frenet curve, parametrized by arc-length, with normal vector n and binormal vector b. Show that if $r>0$ is sufficiently small, then the tubular surface $f:[0, L] \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ around c defined by

$$
f(t, \varphi):=c(t)+r(\cos \varphi \cdot n(t)+\sin \varphi \cdot b(t))
$$

is regular and the area of $\left.f\right|_{[0, L] \times[0,2 \pi)}$ equals $2 \pi r L$.

2. Torus

Let $a>r>0$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the parametrization of a torus T, defined as

$$
f(x, y):=((a+r \cos x) \cos y,(a+r \cos x) \sin y, r \sin x) .
$$

Prove that:
(a) If a geodesic is at some point tangential to the circle $x=\frac{\pi}{2}$ then it must be contained in the region of T with $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(b) Suppose that a geodesic $c: \mathbb{R} \longrightarrow T$, which crosses the circle $x=0$ with an angle $\theta \in\left(0, \frac{\pi}{2}\right)$, also intersects the circle $x=\pi$, then

$$
\cos \theta \leq \frac{a-r}{a+r} .
$$

3. Energy

Let $M \subset \mathbb{R}^{n}$ be a submanifold, $c_{0}:[a, b] \rightarrow M$ a smooth curve and

$$
E\left(c_{0}\right):=\frac{1}{2} \int_{a}^{b}\left|\dot{c}_{0}(t)\right|^{2} \mathrm{~d} t
$$

its energy.
(a) Show that $L\left(c_{0}\right)^{2} \leq 2(b-a) E\left(c_{0}\right)$ with an equality if and only if c_{0} is parametrized proportionally to arc-length.
(b) Compute $\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)$ for a smooth variation $\left\{c_{s}\right\}_{s \in(-\varepsilon, \varepsilon)}$ of c_{0} in M.
(c) Characterize geodesics in M using the energy.

