Exercise Sheet 7

1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:
Lemma. Let M be a compact, connected, m-dimensional submanifold of \mathbb{R}^{m+1}. Suppose that for each vector $v \in S^{m}$ there exists $\lambda=\lambda(v) \in \mathbb{R}$ such that M is symmetric with respect to reflections on the hyperplane $E_{v, \lambda}:=\left\{x \in \mathbb{R}^{m+1}:\langle x, v\rangle=\lambda\right\}$, then M is a sphere.

2. Non-positively Curved Surfaces

Let $M \subset \mathbb{R}^{3}$ be a surface with Gauss curvature $K \leq 0$. Prove the following assertions (we assume $a<b$).
a) There is no simple geodesic loop (in particular no simple C^{∞}-closed geodesic) $c:[a, b] \rightarrow M$ whose trace bounds a topological disk in M.
b) There is no pair of injective geodesics $c_{1}, c_{2}:[a, b] \rightarrow M$ such that $c_{1}(a)=c_{2}(a)$ and $c_{1}(b)=c_{2}(b)$ are the only common points and the union of the traces bounds a topological disk.
c) If M is homeomorphic to a cylinder and $K<0$, then there is no pair of simple C^{∞}-closed geodesics $c_{1}, c_{2}:[a, b] \rightarrow M$ with different traces.

3. Gauss Map of the Torus

a) Let $f: U \rightarrow \mathbb{R}^{m+1}, U \subset \mathbb{R}^{m}$ open, be an immersion with Gauss map $\nu: U \rightarrow S^{m}$. Assuming that ν is an immersion, prove that

$$
A(\nu)=\int_{U}|K| \sqrt{\operatorname{det}\left(g_{i j}\right)} \mathrm{d} x .
$$

b) Let $T \subset \mathbb{R}^{3}$ be a torus. Describe the image of the Gauss map and prove that

$$
\int_{T} K \mathrm{~d} A=0
$$

without using the Theorem of Gauss-Bonnet.

