D-MATH

Prof. Dr. Joaquim Serra

Exercise Sheet 7

1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:

Lemma. Let M be a compact, connected, m-dimensional submanifold of \mathbb{R}^{m+1} . Suppose that for each vector $v \in S^m$ there exists $\lambda = \lambda(v) \in \mathbb{R}$ such that M is symmetric with respect to reflections on the hyperplane $E_{v,\lambda} \coloneqq \{x \in \mathbb{R}^{m+1} : \langle x, v \rangle = \lambda\}, \text{ then } M \text{ is a sphere.}$

2. Non-positively Curved Surfaces

Let $M \subset \mathbb{R}^3$ be a surface with Gauss curvature $K \leq 0$. Prove the following assertions (we assume a < b).

- a) There is no simple geodesic loop (in particular no simple C^{∞} -closed geodesic) $c: [a, b] \to M$ whose trace bounds a topological disk in M.
- b) There is no pair of injective geodesics $c_1, c_2: [a, b] \to M$ such that $c_1(a) = c_2(a)$ and $c_1(b) = c_2(b)$ are the only common points and the union of the traces bounds a topological disk.
- c) If M is homeomorphic to a cylinder and K < 0, then there is no pair of simple C^{∞} -closed geodesics $c_1, c_2: [a, b] \to M$ with different traces.

3. Gauss Map of the Torus

a) Let $f: U \to \mathbb{R}^{m+1}, U \subset \mathbb{R}^m$ open, be an immersion with Gauss map $\nu: U \to S^m$. Assuming that ν is an immersion, prove that

$$A(\nu) = \int_U |K| \sqrt{\det(g_{ij})} \, \mathrm{d}x.$$

b) Let $T \subset \mathbb{R}^3$ be a torus. Describe the image of the Gauss map and prove that

$$\int_T K \, \mathrm{d}A = 0,$$

without using the Theorem of Gauss-Bonnet.