Exercise Sheet 9

1. Embeddings

- a) Find an embedding $S^k \times \mathbb{R}^l \hookrightarrow \mathbb{R}^{k+l}$, where $k, l \ge 1$.
- b) Prove that if the *m*-dimensional manifold M is a product of spheres, then there is an embedding $M \hookrightarrow \mathbb{R}^{m+1}$.

2. The Complex Projective Space

Consider the following equivalence relation on the complex vector space \mathbb{C}^{n+1} :

 $x \sim y \quad \iff \quad x = \lambda y \text{ for some } \lambda \in \mathbb{C} \setminus \{0\}.$

The quotient space $\mathbb{CP}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, equipped with the quotient topology, is called *complex projective space*.

a) Find a differentiable structure on the topological space \mathbb{CP}^n such that the canonical projection

$$\pi\colon \mathbb{C}^{n+1}\smallsetminus\{0\}\longrightarrow \mathbb{C}\mathbb{P}^n$$

is a differentiable map.

b) Prove that S^2 and \mathbb{CP}^1 are diffeomorphic.

3. Hopf Fibration

Let $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ be the canonical projection from Exercise 2. The *Hopf fibration*

$$H\colon S^{2n+1}\to \mathbb{CP}^n$$

is given by the restriction of π to $S^{2n+1} \subset \mathbb{C}^{n+1} \setminus \{0\}$

- a) Let n = 1. Describe the fibers of H over a point $x \in \mathbb{CP}^1$, that is, $H^{-1}(x)$.
- b) Prove that $H: S^{2n+1} \to \mathbb{CP}^n$ is a submersion.