Solutions 1

1. Arc length

Let $c \in C^{1}\left([0,1], \mathbb{R}^{n}\right)$. Show that the metric definition of arc length coincides with $L(c):=\int_{0}^{1}\left|c^{\prime}(t)\right| \mathrm{d} t$.
Solution. We'll denote by $l(c)$ the length of the curve c given by the metric definition.

We first show $l(c) \leq L(c)$. Let $0=t_{0} \leq \ldots \leq t_{n}=1$ be a finite partition of $[0,1]$, then

$$
\begin{aligned}
\sum_{i=1}^{n} d\left(c\left(t_{i-1}\right), c\left(t_{i}\right)\right) & =\sum_{i=1}^{n}\left|c\left(t_{i}\right)-c\left(t_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\int_{t_{i-1}}^{t_{i}} c^{\prime}(\tau) \mathrm{d} \tau\right| \\
& \leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left|c^{\prime}(\tau)\right| \mathrm{d} \tau=\int_{0}^{1}\left|c^{\prime}(\tau)\right| \mathrm{d} \tau
\end{aligned}
$$

and thus $l(c) \leq L(c)$.
We now show the other inequality: let $\varepsilon>0$ and choose $n \geq 2$ big enough such that $h:=\frac{1}{n}<\varepsilon$. Consider the partition of $[0,1]$ given by $t_{k}:=\frac{k}{n}$ for $k=0, \ldots, n$, then

$$
\begin{aligned}
\frac{1}{h} \int_{0}^{1-h} d(c(t), c(t+h)) \mathrm{d} t & =\frac{1}{h} \int_{0}^{t_{n-1}} d(c(t), c(t+h)) \mathrm{d} t \\
& =\frac{1}{h} \sum_{k=0}^{n-2} \int_{t_{k}}^{t_{k+1}} d(c(t), c(t+h)) \mathrm{d} t \\
& =\frac{1}{h} \sum_{k=0}^{n-2} \int_{0}^{h} d\left(c\left(s+t_{k}\right), c\left(s+t_{k+1}\right)\right) \mathrm{d} s \\
& =\frac{1}{h} \int_{0}^{h} \sum_{k=0}^{n-2} d\left(c\left(s+t_{k}\right), c\left(s+t_{k+1}\right)\right) \mathrm{d} s \\
& \leq \frac{1}{h} \int_{0}^{h} l(c) \mathrm{d} s=l(c)
\end{aligned}
$$

where in the third equality we have used the substitution $s=t-t_{k}$. Using Fatou's lemma we obtain

$$
\begin{aligned}
\int_{0}^{1-\epsilon}\left|c^{\prime}(t)\right| \mathrm{d} t & =\int_{0}^{1-\epsilon} \lim _{n \rightarrow \infty}\left|\frac{c(t+h)-c(t)}{h}\right| \mathrm{d} t \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{h} \int_{0}^{1-\epsilon} d(c(t), c(t+h)) \mathrm{d} t \leq l(c)
\end{aligned}
$$

and the statement follows by letting $\varepsilon \rightarrow 0$.

2. Osculating circle

Let $c \in C^{2}\left(I, \mathbb{R}^{2}\right)$ be a curve parametrized by arc length. A circle $S \subset \mathbb{R}^{2}$ with center $q \in \mathbb{R}^{2}$ and radius $r \geq 0$ is called osculating circle to c at the point $t \in I$ if S coincides with c at the point $c(t)$ up to second order.

Show that if $\ddot{c}(t) \neq 0$ then there is a unique osculating circle S to c at the point t. Find q, r and a parametrization α of S with $\alpha(t)=c(t), \dot{\alpha}(t)=\dot{c}(t)$ and $\ddot{\alpha}(t)=\ddot{c}(t)$.

Solution. We start with two remarks:

- Two curves α, β coincide up to second order at t_{0} if

$$
\alpha\left(t_{0}\right)=\beta\left(t_{0}\right), \quad \dot{\alpha}\left(t_{0}\right)=\dot{\beta}\left(t_{0}\right), \quad \ddot{\alpha}\left(t_{0}\right)=\ddot{\beta}\left(t_{0}\right)
$$

- Every regular C^{2}-curve $c: I \rightarrow \mathbb{R}^{2}$ is a Frenet curve. If c is parametrized by arc-length then

$$
\begin{aligned}
& e_{1}(t):=\dot{c}(t) \\
& e_{2}(t):=e_{1}(t) \text { rotated } \frac{\pi}{2} \text { to the left. }
\end{aligned}
$$

From $\langle\dot{c}(t), \ddot{c}(t)\rangle=\frac{1}{2}\langle\dot{c}(t), \ddot{c}(t)\rangle^{\prime}=0$ it follows that $\ddot{c}(t)$ and $e_{2}(t)$ are parallel and $\ddot{c}(t)=\kappa_{\text {or }}(t) \cdot e_{2}(t)$. Therefore (for a Frenet curve)

$$
\ddot{c}(t) \neq 0 \Longleftrightarrow \kappa_{\text {or }}(t) \neq 0 .
$$

We claim that the circle S with center

$$
q:=c\left(t_{0}\right)+\frac{1}{\kappa_{\text {or }}\left(t_{0}\right)} e_{2}\left(t_{0}\right)
$$

and radius

$$
r:=\frac{1}{\left|\kappa_{\text {or }}\left(t_{0}\right)\right|}
$$

is the unique osculating circle for c at t_{0}.
We parametrize S as follows

$$
\alpha(t)=q+\frac{1}{\kappa_{\text {or }}\left(t_{0}\right)}\left(\sin \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{1}\left(t_{0}\right)-\cos \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{2}\left(t_{0}\right)\right) .
$$

Then

$$
\begin{aligned}
\alpha^{\prime}(t) & =\cos \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{1}\left(t_{0}\right)+\sin \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{2}\left(t_{0}\right) \\
\alpha^{\prime \prime}(t) & =\kappa_{\text {or }}\left(t_{0}\right)\left(-\sin \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{1}\left(t_{0}\right)+\cos \left(\kappa_{\text {or }}\left(t_{0}\right)\left(t-t_{0}\right)\right) \cdot e_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

At $t=t_{0}$ we have

$$
\begin{aligned}
\alpha\left(t_{0}\right) & =q-\frac{1}{\kappa_{\text {or }}\left(t_{0}\right)} \cdot e_{2}\left(t_{0}\right)=c\left(t_{0}\right) \\
\dot{\alpha}\left(t_{0}\right) & =e_{1}\left(t_{0}\right)=\dot{c}\left(t_{0}\right) \\
\ddot{\alpha}\left(t_{0}\right) & =\kappa_{\text {or }}\left(t_{0}\right) \cdot e_{2}\left(t_{0}\right)=\ddot{c}\left(t_{0}\right)
\end{aligned}
$$

and so S is an osculating circle for c at t_{0}.
We now prove uniqueness. Let T be another osculating circle for c at t_{0} and denote by β an arc-length parametrization of T (with $\beta\left(t_{0}\right)=c\left(t_{0}\right), \dot{\beta}\left(t_{0}\right)=\dot{c}\left(t_{0}\right)$ and $\left.\ddot{\beta}\left(t_{0}\right)=\ddot{c}\left(t_{0}\right)\right)$. Let a_{1}, a_{2} be a Frenet frame for α and b_{1}, b_{2} a Frenet frame for β, then

$$
\beta\left(t_{0}\right)=c\left(t_{0}\right)=\alpha\left(t_{0}\right)
$$

and

$$
b_{1}\left(t_{0}\right)=\dot{\beta}\left(t_{0}\right)=\dot{c}\left(t_{0}\right)=\dot{\alpha}\left(t_{0}\right)=a_{1}\left(t_{0}\right),
$$

so also $b_{2}\left(t_{0}\right)=a_{2}\left(t_{0}\right)$.
Moreover

$$
\kappa_{\text {or }, \beta}\left(t_{0}\right) \cdot b_{2}\left(t_{0}\right)=\ddot{\beta}\left(t_{0}\right)=\ddot{c}\left(t_{0}\right)=\ddot{\alpha}\left(t_{0}\right)=\kappa_{\text {or }, \alpha}\left(t_{0}\right) \cdot a_{2}\left(t_{0}\right),
$$

and hence $\kappa_{\text {or }, \beta}\left(t_{0}\right)=\kappa_{\text {or }, \alpha}\left(t_{0}\right)$.
Notice that circles have constant curvature κ, that is $\kappa\left(t_{0}\right)=\kappa(t)$, hence $\kappa_{\text {or }, \alpha}(t)=\kappa_{\text {or }, \beta}(t)$ for all t. It follows directly from the Fundamental Theorem of local curve theory that $\alpha(t)=\beta(t)$ and therefore $S=T$.

3. Curvature and torsion

a) Let $c \in C^{3}\left(I, \mathbb{R}^{3}\right)$ be a Frenet curve. Show that for the curvature κ and the torsion τ of c it holds that:

$$
\kappa=\frac{|\dot{c} \times \ddot{c}|}{|\dot{c}|^{3}} \quad \text { and } \quad \tau=\frac{\operatorname{det}(\dot{c}, \ddot{c}, \ddot{c})}{|\dot{c} \times \ddot{c}|^{2}}
$$

b) Let $r, h>0$ and denote by σ the following reflection of \mathbb{R}^{3} :

$$
\sigma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto(x, y,-z)
$$

Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of the following Helixes:

$$
\begin{aligned}
& c_{1}(t)=\left(r \cos t, r \sin t, \frac{h}{2 \pi} t\right), \\
& c_{2}(t)=c_{1}(-t), \\
& c_{3}(t)=\sigma \circ c_{1}(t) .
\end{aligned}
$$

Solution.

a) From $e_{1}=\frac{\dot{c}}{|\dot{c}|}$ it follows that $\dot{c}=|\dot{c}| \cdot e_{1}$ and from the first Frenet equation we have $\dot{e}_{1}=|\dot{c}| \kappa \cdot e_{2}$, so

$$
\ddot{c}=\left(|\dot{c}| \cdot e_{1}\right)=|\dot{c}|^{\prime} \cdot e_{1}+|\dot{c}| \cdot \dot{e}_{1}=|\dot{c}|^{\prime} \cdot e_{1}+|\dot{c}|^{2} \kappa \cdot e_{2}
$$

and

$$
\begin{aligned}
\dot{c} \times \ddot{c} & =|\dot{c}|^{\prime} \cdot \dot{c} \times e_{1}+|\dot{c}| 2 \kappa \cdot \dot{c} \times e_{2} \\
& =\left(|\dot{c}|^{\prime}\right)^{2} \cdot e_{1} \times e_{1}+|\dot{c}|^{3} \kappa \cdot e_{1} \times e_{2} \\
& =|\dot{c}|^{3} \kappa \cdot e_{1} \times e_{2} \\
& =|\dot{c}|^{3} \kappa \cdot e_{3},
\end{aligned}
$$

thus $|\dot{c} \times \ddot{c}|=|\dot{c}|^{3}$, which solved for κ gives

$$
\kappa=\frac{|\dot{c} \times \ddot{c}|}{|\dot{c}|^{3}} .
$$

Moreover, using the above identity for \dot{e}_{1} and the Frenet equation for \dot{e}_{2} we obtain

$$
\begin{aligned}
\dddot{c} & =|\dot{c}|^{\prime \prime} \cdot e_{1}+|\dot{c}|^{\prime} \cdot \dot{e}_{1}+\left(|\dot{c}|^{2} \kappa\right)^{\prime} \cdot e_{2}+|\dot{c}|^{2} \kappa \cdot \dot{e}_{2} \\
& =|\dot{c}|^{\prime \prime} \cdot e_{1}+\left(|\dot{c}|^{\prime}|\dot{c}| \kappa+\left(|\dot{c}|^{2} \kappa\right)^{\prime}\right) \cdot e_{2}+|\dot{c}|^{2} \kappa \cdot \dot{e}_{2} \\
& =|\dot{c}|^{\prime \prime} \cdot e_{1}+\left(|\dot{c}|^{\prime}|\dot{c}| \kappa+\left(|\dot{c}|^{2} \kappa\right)^{\prime}\right) \cdot e_{2}+|\dot{c}|^{2} \kappa\left(-{ }_{=: A}^{\left.|\dot{c}| \kappa \cdot e_{1}+|\dot{c}| \tau \cdot e_{3}\right)}\right. \\
& =\underbrace{\left(|\dot{c}|^{\prime \prime}-|\dot{c}|^{3} \kappa^{2}\right)}_{=: B} \cdot e_{1}+\underbrace{\left(|\dot{c}|^{\prime}|\dot{c}| \kappa+\left(|\dot{c}|^{2} \kappa\right)^{\prime}\right)}_{=: C} \cdot e_{2}+\underbrace{|\dot{c}|^{3} \kappa \tau}_{=:} \cdot e_{3} .
\end{aligned}
$$

Consequently we can compute $\operatorname{det}(\dot{c}, \ddot{c}, \ddot{c})$ as follows:

$$
\begin{aligned}
\operatorname{det}(\dot{c}, \ddot{c}, \ddot{c}) & =\operatorname{det}\left(|\dot{c}| \cdot e_{1},|\dot{c}|^{\prime} \cdot e_{1}+|\dot{c}|^{2} \kappa \cdot e_{2}, A \cdot e_{1}+B \cdot e_{2}+C \cdot e_{3}\right) \\
& =\operatorname{det}\left(|\dot{c}| \cdot e_{1},|\dot{c}|^{2} \kappa \cdot e_{2},|\dot{c}|^{3} \kappa \tau \cdot e_{3}\right) \\
& =|\dot{c}|^{6} \kappa^{2} \tau \operatorname{det}\left(e_{1}, e_{2}, e_{3}\right) \\
& =|\dot{c}|^{6} \kappa^{2} \tau \\
& =\tau \cdot|\dot{c} \times \ddot{c}|
\end{aligned}
$$

which proves the statement.
b) We'll denote by $\kappa_{1}, \kappa_{2}, \kappa_{2}$ and $\tau_{1}, \tau_{2}, \tau_{2}$ curvature and torsion of the curves c_{1}, c_{2} and c_{3}, respectively ${ }^{1}$
We compute

$$
\begin{aligned}
& c_{1}(t)=\left(r \cos t, r \sin t, \frac{h}{2 \pi} t\right), \\
& \dot{c}_{1}(t)=\left(-r \sin t, r \cos t, \frac{h}{2 \pi}\right), \\
& \dddot{c}_{1}(t)=(-r \cos t,-r \sin t, 0), \\
& \dddot{c}_{1}(t)=(r \sin t,-r \cos t, 0) .
\end{aligned}
$$

It holds that

$$
\begin{aligned}
\dot{c}_{1} \times \ddot{c}_{1} & =\left(r \frac{h}{2 \pi} \sin t,-r \frac{h}{2 \pi} \cos t, r^{2}\right), \\
\left|\dot{c}_{1} \times \ddot{c}_{1}\right| & =\left(r^{2} \frac{h^{2}}{4 \pi^{2}}+r^{4}\right)^{\frac{1}{2}}=r\left(\frac{h^{2}}{4 \pi^{2}}+r^{2}\right)^{\frac{1}{2}}, \\
\left|\dot{c}_{1}\right| & =\left(r^{2}+\frac{h^{2}}{4 \pi^{2}}\right)^{\frac{1}{2}},
\end{aligned}
$$

and therefore

$$
\kappa_{1}=\frac{\left|\dot{c}_{1} \times \ddot{c}_{1}\right|}{\left|\dot{c}_{1}\right|^{3}}=\frac{r}{r^{2}+\frac{h^{2}}{4 \pi^{2}}} .
$$

[^0]Prof. Dr. Joaquim Serra

With

$$
\begin{aligned}
\operatorname{det}() & =\operatorname{det}\left(\begin{array}{ccc}
-r \sin t & -r \cos t & r \sin t \\
r \cos t & -r \sin t & -r \cos t \\
\frac{h}{2 \pi} & 0 & 0
\end{array}\right) \\
& =r^{2} \frac{h}{2 \pi} \cos ^{2} t+r^{2} \frac{h}{2 \pi} \sin ^{2} t=r^{2} \frac{h}{2 \pi}
\end{aligned}
$$

it follows that

$$
\tau_{1}=\frac{\operatorname{det}\left(\dot{c}_{1}, \ddot{c}_{1}, \dddot{c}_{1}\right)}{\left|\dot{c}_{1} \times \ddot{c}_{1}\right|^{2}}=\frac{r^{2} \frac{h}{2 \pi}}{r^{2}\left(\frac{h^{2}}{4 \pi^{2}}+r^{2}\right)}=\frac{\frac{h}{2 \pi}}{\frac{h^{2}}{4 \pi^{2}}+r^{2}} .
$$

For c_{2} we have

$$
\begin{aligned}
c_{2}(t) & =c_{1}(-t) \\
\dot{c}_{2}(t) & =-\dot{c}_{1}(-t), \\
\ddot{c}_{2}(t) & =\ddot{c}_{1}(-t), \\
\dddot{c}_{2}(t) & =-\dddot{c}_{1}(-t),
\end{aligned}
$$

therefore

$$
\kappa_{2}(t)=\frac{\left|\dot{c}_{2}(t) \times \ddot{c}_{2}(t)\right|}{\left|c_{2}^{\prime}(t)\right|^{3}}=\frac{\left|-\dot{c}_{1}(-t) \times \ddot{c}_{1}(-t)\right|}{\left|-\dot{c}_{1}(-t)\right|^{3}}=\kappa_{1}(-t)=\frac{r}{r^{2}+\frac{h^{2}}{4 \pi^{2}}}
$$

and

$$
\begin{aligned}
\tau_{2}(t) & =\frac{\operatorname{det}\left(\dot{c}_{2}(t), \ddot{c}_{2}(t), \dddot{c}_{2}(t)\right)}{\left|\dot{c}_{2}(t) \times \ddot{c}_{2}(t)\right|^{2}} \\
& =\frac{\operatorname{det}\left(-\dot{c}_{1}(-t), \ddot{c}_{1}(-t),-\dddot{c}_{1}(-t)\right)}{\left|-\dot{c}_{1}(-t) \times \ddot{c}_{1}(-t)\right|^{2}}=\tau_{1}(-t)=\frac{\frac{h}{2 \pi}}{\frac{h^{2}}{4 \pi^{2}}+r^{2}}
\end{aligned}
$$

The curve c_{3} satisfies $\left|\dot{c}_{3} \times \ddot{c}_{3}\right|=\left|\dot{c}_{1} \times \ddot{c}_{1}\right|$ and $\operatorname{det}\left(\dot{c}_{3}, \ddot{c}_{3}, \dddot{c}_{3}\right)=-\operatorname{det}\left(\dot{c}_{1}, \ddot{c}_{1}, \dddot{c}_{1}\right)$, SO

$$
\begin{aligned}
& \kappa_{3}=\kappa_{2}=\frac{r}{r^{2}+\frac{h^{2}}{4 \pi^{2}}}, \\
& \tau_{3}=-\tau_{1}=-\frac{\frac{h}{2 \pi}}{\frac{h^{2}}{4 \pi^{2}}+r^{2}} .
\end{aligned}
$$

[^0]: ${ }^{1}$ Be careful! In the lecture we denoted $\kappa_{1}, \kappa_{2}, \ldots$ the different Frenet curvatures of a single curve c. In \mathbb{R}^{3} curvature and torsion are simply defined as the first and second Frenet curvatures:

 $$
 \kappa:=\frac{1}{|\dot{c}|}\left\langle\dot{e}_{1}, e_{2}\right\rangle \quad \text { and } \quad \tau:=\frac{1}{|\dot{c}|}\left\langle\dot{e}_{2}, e_{3}\right\rangle
 $$

