D-MATH Prof. Dr. Joaquim Serra Differential Geometry I

Solutions 1

1. Arc length

Let $c \in C^1([0,1], \mathbb{R}^n)$. Show that the metric definition of arc length coincides with $L(c) \coloneqq \int_0^1 |c'(t)| dt$.

Solution. We'll denote by l(c) the length of the curve c given by the metric definition.

We first show $l(c) \leq L(c)$. Let $0 = t_0 \leq \ldots \leq t_n = 1$ be a finite partition of [0, 1], then

$$\sum_{i=1}^{n} d(c(t_{i-1}), c(t_i)) = \sum_{i=1}^{n} |c(t_i) - c(t_{i-1})| = \sum_{i=1}^{n} \left| \int_{t_{i-1}}^{t_i} c'(\tau) \, \mathrm{d}\tau \right|$$
$$\leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} |c'(\tau)| \, \mathrm{d}\tau = \int_0^1 |c'(\tau)| \, \mathrm{d}\tau,$$

and thus $l(c) \leq L(c)$.

We now show the other inequality: let $\varepsilon > 0$ and choose $n \ge 2$ big enough such that $h := \frac{1}{n} < \varepsilon$. Consider the partition of [0,1] given by $t_k := \frac{k}{n}$ for $k = 0, \ldots, n$, then

$$\frac{1}{h} \int_{0}^{1-h} d(c(t), c(t+h)) dt = \frac{1}{h} \int_{0}^{t_{n-1}} d(c(t), c(t+h)) dt$$
$$= \frac{1}{h} \sum_{k=0}^{n-2} \int_{t_{k}}^{t_{k+1}} d(c(t), c(t+h)) dt$$
$$= \frac{1}{h} \sum_{k=0}^{n-2} \int_{0}^{h} d(c(s+t_{k}), c(s+t_{k+1})) ds$$
$$= \frac{1}{h} \int_{0}^{h} \sum_{k=0}^{n-2} d(c(s+t_{k}), c(s+t_{k+1})) ds$$
$$\leq \frac{1}{h} \int_{0}^{h} l(c) ds = l(c),$$

where in the third equality we have used the substitution $s = t - t_k$. Using Fatou's lemma we obtain

$$\int_0^{1-\epsilon} |c'(t)| \, \mathrm{d}t = \int_0^{1-\epsilon} \lim_{n \to \infty} \left| \frac{c(t+h) - c(t)}{h} \right| \, \mathrm{d}t$$
$$\leq \liminf_{n \to \infty} \frac{1}{h} \int_0^{1-\epsilon} d(c(t), c(t+h)) \, \mathrm{d}t \leq l(c)$$

and the statement follows by letting $\varepsilon \to 0$.

2. Osculating circle

Let $c \in C^2(I, \mathbb{R}^2)$ be a curve parametrized by arc length. A circle $S \subset \mathbb{R}^2$ with center $q \in \mathbb{R}^2$ and radius $r \ge 0$ is called *osculating circle* to c at the point $t \in I$ if S coincides with c at the point c(t) up to second order.

Show that if $\ddot{c}(t) \neq 0$ then there is a unique osculating circle S to c at the point t. Find q, r and a parametrization α of S with $\alpha(t) = c(t), \dot{\alpha}(t) = \dot{c}(t)$ and $\ddot{\alpha}(t) = \ddot{c}(t)$.

Solution. We start with two remarks:

• Two curves α, β coincide up to second order at t_0 if

$$\alpha(t_0) = \beta(t_0), \qquad \dot{\alpha}(t_0) = \dot{\beta}(t_0), \qquad \ddot{\alpha}(t_0) = \ddot{\beta}(t_0).$$

• Every regular $C^2\text{-}{\rm curve}\ c\colon I\to \mathbb{R}^2$ is a Frenet curve. If c is parametrized by arc-length then

$$e_1(t) := \dot{c}(t)$$

 $e_2(t) := e_1(t)$ rotated $\frac{\pi}{2}$ to the left.

From $\langle \dot{c}(t), \ddot{c}(t) \rangle = \frac{1}{2} \langle \dot{c}(t), \ddot{c}(t) \rangle' = 0$ it follows that $\ddot{c}(t)$ and $e_2(t)$ are parallel and $\ddot{c}(t) = \kappa_{\rm or}(t) \cdot e_2(t)$. Therefore (for a Frenet curve)

$$\ddot{c}(t) \neq 0 \iff \kappa_{\rm or}(t) \neq 0.$$

We claim that the circle S with center

$$q \coloneqq c(t_0) + \frac{1}{\kappa_{\rm or}(t_0)} e_2(t_0)$$

and radius

$$r\coloneqq \frac{1}{|\kappa_{\rm or}(t_0)|}$$

is the unique osculating circle for c at t_0 .

We parametrize ${\cal S}$ as follows

$$\alpha(t) = q + \frac{1}{\kappa_{\rm or}(t_0)} \Big(\sin\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_1(t_0) - \cos\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_2(t_0) \Big).$$

Then

$$\alpha'(t) = \cos\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_1(t_0) + \sin\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_2(t_0),$$

$$\alpha''(t) = \kappa_{\rm or}(t_0) \left(-\sin\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_1(t_0) + \cos\left(\kappa_{\rm or}(t_0)(t-t_0)\right) \cdot e_2(t_0)\right).$$

At $t = t_0$ we have

$$\begin{aligned} \alpha(t_0) &= q - \frac{1}{\kappa_{\rm or}(t_0)} \cdot e_2(t_0) = c(t_0) \\ \dot{\alpha}(t_0) &= e_1(t_0) = \dot{c}(t_0), \\ \ddot{\alpha}(t_0) &= \kappa_{\rm or}(t_0) \cdot e_2(t_0) = \ddot{c}(t_0), \end{aligned}$$

and so S is an osculating circle for c at t_0 .

We now prove uniqueness. Let T be another osculating circle for c at t_0 and denote by β an arc-length parametrization of T (with $\beta(t_0) = c(t_0), \dot{\beta}(t_0) = \dot{c}(t_0)$ and $\ddot{\beta}(t_0) = \ddot{c}(t_0)$). Let a_1, a_2 be a Frenet frame for α and b_1, b_2 a Frenet frame for β , then

$$\beta(t_0) = c(t_0) = \alpha(t_0)$$

D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

and

$$b_1(t_0) = \dot{\beta}(t_0) = \dot{c}(t_0) = \dot{\alpha}(t_0) = a_1(t_0),$$

so also $b_2(t_0) = a_2(t_0)$.

 ${\rm Moreover}$

$$\kappa_{\mathrm{or},\beta}(t_0) \cdot b_2(t_0) = \ddot{\beta}(t_0) = \ddot{c}(t_0) = \ddot{\alpha}(t_0) = \kappa_{\mathrm{or},\alpha}(t_0) \cdot a_2(t_0),$$

and hence $\kappa_{\mathrm{or},\beta}(t_0) = \kappa_{\mathrm{or},\alpha}(t_0)$.

Notice that circles have constant curvature κ , that is $\kappa(t_0) = \kappa(t)$, hence $\kappa_{\text{or},\alpha}(t) = \kappa_{\text{or},\beta}(t)$ for all t. It follows directly from the Fundamental Theorem of local curve theory that $\alpha(t) = \beta(t)$ and therefore S = T.

3. Curvature and torsion

a) Let $c \in C^3(I, \mathbb{R}^3)$ be a Frenet curve. Show that for the curvature κ and the torsion τ of c it holds that:

$$\kappa = \frac{|\dot{c} \times \ddot{c}|}{|\dot{c}|^3} \qquad \text{and} \qquad \tau = \frac{\det(\dot{c}, \ddot{c}, \ddot{c})}{|\dot{c} \times \ddot{c}|^2}.$$

b) Let r, h > 0 and denote by σ the following reflection of \mathbb{R}^3 :

$$\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (x, y, -z).$$

Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of the following Helixes:

$$c_{1}(t) = (r \cos t, r \sin t, \frac{h}{2\pi}t), c_{2}(t) = c_{1}(-t), c_{3}(t) = \sigma \circ c_{1}(t).$$

Solution.

a) From $e_1 = \frac{\dot{c}}{|\dot{c}|}$ it follows that $\dot{c} = |\dot{c}| \cdot e_1$ and from the first Frenet equation we have $\dot{e}_1 = |\dot{c}| \kappa \cdot e_2$, so

$$\ddot{c} = (|\dot{c}| \cdot e_1) = |\dot{c}|' \cdot e_1 + |\dot{c}| \cdot \dot{e}_1 = |\dot{c}|' \cdot e_1 + |\dot{c}|^2 \kappa \cdot e_2$$

and

$$\begin{aligned} \dot{c} \times \ddot{c} &= |\dot{c}|' \cdot \dot{c} \times e_1 + |\dot{c}| 2\kappa \cdot \dot{c} \times e_2 \\ &= (|\dot{c}|')^2 \cdot e_1 \times e_1 + |\dot{c}|^3 \kappa \cdot e_1 \times e_2 \\ &= |\dot{c}|^3 \kappa \cdot e_1 \times e_2 \\ &= |\dot{c}|^3 \kappa \cdot e_3, \end{aligned}$$

thus $|\dot{c} \times \ddot{c}| = |\dot{c}|^3$, which solved for κ gives

$$\kappa = \frac{|\dot{c} \times \ddot{c}|}{|\dot{c}|^3}$$

D-MATH Prof. Dr. Joaquim Serra

Moreover, using the above identity for \dot{e}_1 and the Frenet equation for \dot{e}_2 we obtain

$$\begin{split} \ddot{c} &= |\dot{c}|'' \cdot e_1 + |\dot{c}|' \cdot \dot{e}_1 + (|\dot{c}|^2 \kappa)' \cdot e_2 + |\dot{c}|^2 \kappa \cdot \dot{e}_2 \\ &= |\dot{c}|'' \cdot e_1 + (|\dot{c}|'|\dot{c}|\kappa + (|\dot{c}|^2 \kappa)') \cdot e_2 + |\dot{c}|^2 \kappa \cdot \dot{e}_2 \\ &= |\dot{c}|'' \cdot e_1 + (|\dot{c}|'|\dot{c}|\kappa + (|\dot{c}|^2 \kappa)') \cdot e_2 + |\dot{c}|^2 \kappa (-|\dot{c}|\kappa \cdot e_1 + |\dot{c}|\tau \cdot e_3) \\ &= \underbrace{(|\dot{c}|'' - |\dot{c}|^3 \kappa^2)}_{=:A} \cdot e_1 + \underbrace{(|\dot{c}|'|\dot{c}|\kappa + (|\dot{c}|^2 \kappa)')}_{=:B} \cdot e_2 + \underbrace{|\dot{c}|^3 \kappa \tau \cdot e_3}_{=:C}. \end{split}$$

Consequently we can compute $det(\dot{c}, \ddot{c}, \ddot{c})$ as follows:

$$det(\dot{c}, \ddot{c}, \ddot{c}) = det \left(|\dot{c}| \cdot e_1, |\dot{c}|' \cdot e_1 + |\dot{c}|^2 \kappa \cdot e_2, A \cdot e_1 + B \cdot e_2 + C \cdot e_3 \right)$$

$$= det \left(|\dot{c}| \cdot e_1, |\dot{c}|^2 \kappa \cdot e_2, |\dot{c}|^3 \kappa \tau \cdot e_3 \right)$$

$$= |\dot{c}|^6 \kappa^2 \tau det(e_1, e_2, e_3)$$

$$= |\dot{c}|^6 \kappa^2 \tau$$

$$= \tau \cdot |\dot{c} \times \ddot{c}|,$$

which proves the statement.

b) We'll denote by $\kappa_1, \kappa_2, \kappa_2$ and τ_1, τ_2, τ_2 curvature and torsion of the curves c_1, c_2 and c_3 , respectively.¹

We compute

$$c_{1}(t) = (r \cos t, r \sin t, \frac{h}{2\pi}t),$$

$$\dot{c}_{1}(t) = (-r \sin t, r \cos t, \frac{h}{2\pi}),$$

$$\ddot{c}_{1}(t) = (-r \cos t, -r \sin t, 0),$$

$$\ddot{c}_{1}(t) = (r \sin t, -r \cos t, 0).$$

It holds that

$$\begin{aligned} \dot{c}_1 \times \ddot{c}_1 &= \left(r\frac{h}{2\pi}\sin t, -r\frac{h}{2\pi}\cos t, r^2\right), \\ |\dot{c}_1 \times \ddot{c}_1| &= \left(r^2\frac{h^2}{4\pi^2} + r^4\right)^{\frac{1}{2}} = r\left(\frac{h^2}{4\pi^2} + r^2\right)^{\frac{1}{2}}, \\ |\dot{c}_1| &= \left(r^2 + \frac{h^2}{4\pi^2}\right)^{\frac{1}{2}}, \end{aligned}$$

and therefore

$$\kappa_1 = \frac{|\dot{c}_1 \times \ddot{c}_1|}{|\dot{c}_1|^3} = \frac{r}{r^2 + \frac{h^2}{4\pi^2}}.$$

$$\kappa \coloneqq \frac{1}{|\dot{c}|} \langle \dot{e}_1, e_2 \rangle \qquad \text{ and } \qquad \tau \coloneqq \frac{1}{|\dot{c}|} \langle \dot{e}_2, e_3 \rangle.$$

HS22

¹Be careful! In the lecture we denoted $\kappa_1, \kappa_2, \ldots$ the different Frenet curvatures of a single curve c. In \mathbb{R}^3 curvature and torsion are simply defined as the first and second Frenet curvatures:

With

$$\det() = \det \begin{pmatrix} -r\sin t & -r\cos t & r\sin t \\ r\cos t & -r\sin t & -r\cos t \\ \frac{h}{2\pi} & 0 & 0 \end{pmatrix}$$
$$= r^2 \frac{h}{2\pi} \cos^2 t + r^2 \frac{h}{2\pi} \sin^2 t = r^2 \frac{h}{2\pi}$$

it follows that

$$\tau_1 = \frac{\det\left(\dot{c}_1, \ddot{c}_1, \ddot{c}_1\right)}{|\dot{c}_1 \times \ddot{c}_1|^2} = \frac{r^2 \frac{h}{2\pi}}{r^2(\frac{h^2}{4\pi^2} + r^2)} = \frac{\frac{h}{2\pi}}{\frac{h^2}{4\pi^2} + r^2}$$

For c_2 we have

$$c_{2}(t) = c_{1}(-t)$$

$$\dot{c}_{2}(t) = -\dot{c}_{1}(-t),$$

$$\ddot{c}_{2}(t) = \ddot{c}_{1}(-t),$$

$$\ddot{c}_{2}(t) = -\ddot{c}_{1}(-t),$$

therefore

$$\kappa_2(t) = \frac{|\dot{c}_2(t) \times \ddot{c}_2(t)|}{|c'_2(t)|^3} = \frac{|-\dot{c}_1(-t) \times \ddot{c}_1(-t)|}{|-\dot{c}_1(-t)|^3} = \kappa_1(-t) = \frac{r}{r^2 + \frac{h^2}{4\pi^2}}$$

and

$$\begin{aligned} \tau_2(t) &= \frac{\det\left(\dot{c}_2(t), \ddot{c}_2(t), \ddot{c}_2(t)\right)}{|\dot{c}_2(t) \times \ddot{c}_2(t)|^2} \\ &= \frac{\det\left(-\dot{c}_1(-t), \ddot{c}_1(-t), -\ddot{c}_1(-t)\right)}{|-\dot{c}_1(-t) \times \ddot{c}_1(-t)|^2} = \tau_1(-t) = \frac{\frac{h}{2\pi}}{\frac{h^2}{4\pi^2} + r^2}. \end{aligned}$$

The curve c_3 satisfies $|\dot{c}_3 \times \ddot{c}_3| = |\dot{c}_1 \times \ddot{c}_1|$ and $\det(\dot{c}_3, \ddot{c}_3, \ddot{c}_3) = -\det(\dot{c}_1, \ddot{c}_1, \ddot{c}_1)$, so

$$\kappa_3 = \kappa_2 = \frac{r}{r^2 + \frac{h^2}{4\pi^2}},$$

$$\tau_3 = -\tau_1 = -\frac{\frac{h}{2\pi}}{\frac{h^2}{4\pi^2} + r^2}.$$