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Solutions 1

1. Arc length

Let c ∈ C1([0, 1],Rn). Show that the metric definition of arc length coincides
with L(c) :=

∫ 1

0
|c′(t)|dt.

Solution. We’ll denote by l(c) the length of the curve c given by the metric
definition.

We first show l(c) ≤ L(c). Let 0 = t0 ≤ . . . ≤ tn = 1 be a finite partition of
[0, 1], then

n∑
i=1

d(c(ti−1), c(ti)) =

n∑
i=1

|c(ti)− c(ti−1)| =
n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

c′(τ) dτ

∣∣∣∣∣
≤

n∑
i=1

∫ ti

ti−1

|c′(τ)| dτ =

∫ 1

0

|c′(τ)| dτ,

and thus l(c) ≤ L(c).
We now show the other inequality: let ε > 0 and choose n ≥ 2 big enough

such that h := 1
n < ε. Consider the partition of [0, 1] given by tk := k

n for
k = 0, . . . , n, then

1

h

∫ 1−h

0

d(c(t), c(t+ h)) dt =
1

h

∫ tn−1

0

d(c(t), c(t+ h)) dt

=
1

h

n−2∑
k=0

∫ tk+1

tk

d(c(t), c(t+ h)) dt

=
1

h

n−2∑
k=0

∫ h

0

d(c(s+ tk), c(s+ tk+1)) ds

=
1

h

∫ h

0

n−2∑
k=0

d(c(s+ tk), c(s+ tk+1)) ds

≤ 1

h

∫ h

0

l(c) ds = l(c),

where in the third equality we have used the substitution s = t − tk. Using
Fatou’s lemma we obtain∫ 1−ε

0

|c′(t)| dt =
∫ 1−ε

0

lim
n→∞

∣∣∣∣c(t+ h)− c(t)
h

∣∣∣∣ dt
≤ lim inf

n→∞

1

h

∫ 1−ε

0

d(c(t), c(t+ h)) dt ≤ l(c)

and the statement follows by letting ε→ 0.

2. Osculating circle

Let c ∈ C2(I,R2) be a curve parametrized by arc length. A circle S ⊂ R2 with
center q ∈ R2 and radius r ≥ 0 is called osculating circle to c at the point t ∈ I
if S coincides with c at the point c(t) up to second order.
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Show that if c..(t) 6= 0 then there is a unique osculating circle S to c at the
point t. Find q, r and a parametrization α of S with α(t) = c(t), α

.
(t) = c

.
(t) and

α
..
(t) = c

..
(t).

Solution. We start with two remarks:

• Two curves α, β coincide up to second order at t0 if

α(t0) = β(t0), α
.
(t0) = β

.
(t0), α

..
(t0) = β

..
(t0).

• Every regular C2-curve c : I → R2 is a Frenet curve. If c is parametrized
by arc-length then

e1(t) := c
.
(t)

e2(t) := e1(t) rotated π
2 to the left.

From 〈c.(t), c..(t)〉 = 1
2 〈c
.
(t), c

..
(t)〉′ = 0 it follows that c..(t) and e2(t) are

parallel and c..(t) = κor(t) · e2(t). Therefore (for a Frenet curve)

c
..
(t) 6= 0⇐⇒ κor(t) 6= 0.

We claim that the circle S with center

q := c(t0) +
1

κor(t0)
e2(t0)

and radius
r :=

1

|κor(t0)|
is the unique osculating circle for c at t0.

We parametrize S as follows

α(t) = q +
1

κor(t0)

(
sin
(
κor(t0)(t− t0)

)
· e1(t0)− cos

(
κor(t0)(t− t0)

)
· e2(t0)

)
.

Then

α′(t) = cos
(
κor(t0)(t− t0)

)
· e1(t0) + sin

(
κor(t0)(t− t0)

)
· e2(t0),

α′′(t) = κor(t0)
(
− sin

(
κor(t0)(t− t0)

)
· e1(t0) + cos

(
κor(t0)(t− t0)

)
· e2(t0)

)
.

At t = t0 we have

α(t0) = q − 1

κor(t0)
· e2(t0) = c(t0),

α
.
(t0) = e1(t0) = c

.
(t0),

α
..
(t0) = κor(t0) · e2(t0) = c

..
(t0),

and so S is an osculating circle for c at t0.
We now prove uniqueness. Let T be another osculating circle for c at t0 and

denote by β an arc-length parametrization of T (with β(t0) = c(t0), β
.
(t0) = c

.
(t0)

and β
..
(t0) = c

..
(t0)). Let a1, a2 be a Frenet frame for α and b1, b2 a Frenet frame

for β, then
β(t0) = c(t0) = α(t0)
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and
b1(t0) = β

.
(t0) = c

.
(t0) = α

.
(t0) = a1(t0),

so also b2(t0) = a2(t0).
Moreover

κor,β(t0) · b2(t0) = β
..
(t0) = c

..
(t0) = α

..
(t0) = κor,α(t0) · a2(t0),

and hence κor,β(t0) = κor,α(t0).
Notice that circles have constant curvature κ, that is κ(t0) = κ(t), hence

κor,α(t) = κor,β(t) for all t. It follows directly from the Fundamental Theorem
of local curve theory that α(t) = β(t) and therefore S = T .

3. Curvature and torsion

a) Let c ∈ C3(I,R3) be a Frenet curve. Show that for the curvature κ and
the torsion τ of c it holds that:

κ =
|c. × c..|
|c.|3

and τ =
det(c

.
, c
..
, c
...
)

|c. × c..|2
.

b) Let r, h > 0 and denote by σ the following reflection of R3:

σ : R3 → R3, (x, y, z) 7→ (x, y,−z).

Compute the curvature κ(t) and the torsion τ(t) of the following Helixes:

c1(t) = (r cos t, r sin t, h2π t),

c2(t) = c1(−t),
c3(t) = σ ◦ c1(t).

Solution.

a) From e1 = c
.

|c
.
| it follows that c

.
= |c.| · e1 and from the first Frenet equation

we have e.1 = |c.|κ · e2, so

c
..
= (|c.| · e1) = |c.|′ · e1 + |c.| · e.1 = |c.|′ · e1 + |c.|2κ · e2

and

c
. × c.. = |c.|′ · c. × e1 + |c.|2κ · c. × e2

= (|c.|′)2 · e1 × e1 + |c.|3κ · e1 × e2
= |c.|3κ · e1 × e2
= |c.|3κ · e3,

thus |c. × c..| = |c.|3, which solved for κ gives

κ =
|c. × c..|
|c.|3

.
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Moreover, using the above identity for e.1 and the Frenet equation for e.2
we obtain

c
...
= |c.|′′ · e1 + |c.|′ · e.1 + (|c.|2κ)′ · e2 + |c.|2κ · e.2
= |c.|′′ · e1 +

(
|c.|′|c.|κ+ (|c.|2κ)′

)
· e2 + |c.|2κ · e.2

= |c.|′′ · e1 +
(
|c.|′|c.|κ+ (|c.|2κ)′

)
· e2 + |c.|2κ

(
− |c.|κ · e1 + |c.|τ · e3

)
=
(
|c.|′′ − |c.|3κ2

)︸ ︷︷ ︸
=:A

·e1 +
(
|c.|′|c.|κ+ (|c.|2κ)′

)︸ ︷︷ ︸
=:B

·e2 + |c.|3κτ︸ ︷︷ ︸
=:C

·e3.

Consequently we can compute det(c
.
, c
..
, c
...
) as follows:

det(c
.
, c
..
, c
...
) = det

(
|c.| · e1, |c.|′ · e1 + |c.|2κ · e2, A · e1 +B · e2 + C · e3

)
= det

(
|c.| · e1, |c.|2κ · e2, |c.|3κτ · e3

)
= |c.|6κ2τ det(e1, e2, e3)
= |c.|6κ2τ
= τ · |c. × c..|,

which proves the statement.

b) We’ll denote by κ1, κ2, κ2 and τ1, τ2, τ2 curvature and torsion of the curves
c1, c2 and c3, respectively.1

We compute

c1(t) = (r cos t, r sin t, h2π t),

c
.
1(t) = (−r sin t, r cos t, h2π ),
c
..
1(t) = (−r cos t,−r sin t, 0),
c
...
1(t) = (r sin t,−r cos t, 0).

It holds that

c
.
1 × c..1 = (r h2π sin t,−r h2π cos t, r2),

|c.1 × c..1| = (r2 h2

4π2 + r4)
1
2 = r( h

2

4π2 + r2)
1
2 ,

|c.1| = (r2 + h2

4π2 )
1
2 ,

and therefore

κ1 =
|c.1 × c..1|
|c.1|3

=
r

r2 + h2

4π2

.

1Be careful! In the lecture we denoted κ1, κ2, . . . the different Frenet curvatures of a sin-
gle curve c. In R3 curvature and torsion are simply defined as the first and second Frenet
curvatures:

κ :=
1

|c.|
〈e.1, e2〉 and τ :=

1

|c.|
〈e.2, e3〉.
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With

det() = det

−r sin t −r cos t r sin t
r cos t −r sin t −r cos t
h
2π 0 0


= r2

h

2π
cos2 t+ r2

h

2π
sin2 t = r2

h

2π

it follows that

τ1 =
det
(
c
.
1, c
..
1, c
...
1

)
|c.1 × c..1|2

=
r2 h

2π

r2( h
2

4π2 + r2)
=

h
2π

h2

4π2 + r2
.

For c2 we have

c2(t) = c1(−t)
c
.
2(t) = −c.1(−t),
c
..
2(t) = c

..
1(−t),

c
...
2(t) = −c...1(−t),

therefore

κ2(t) =
|c.2(t)× c..2(t)|
|c′2(t)|3

=
| − c.1(−t)× c..1(−t)|
| − c.1(−t)|3

= κ1(−t) =
r

r2 + h2

4π2

and

τ2(t) =
det
(
c
.
2(t), c

..
2(t), c

...
2(t)

)
|c.2(t)× c..2(t)|2

=
det
(
− c.1(−t), c..1(−t),−c...1(−t)

)
| − c.1(−t)× c..1(−t)|2

= τ1(−t) =
h
2π

h2

4π2 + r2
.

The curve c3 satisfies |c.3×c..3| = |c.1×c..1| and det(c
.
3, c
..
3, c
...
3) = −det(c

.
1, c
..
1, c
...
1),

so

κ3 = κ2 =
r

r2 + h2

4π2

,

τ3 = −τ1 = −
h
2π

h2

4π2 + r2
.
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