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Solutions 10

1. Regular Values

Let M and N be manifolds of the same dimension with M compact and let
f: M — N be a smooth map. Let y € N be a regular value of f. Prove the
following statements.

a) The preimage f~'(y) has only finitely many elements.

b) The number of elements in the fiber over y is locally constant in N.
That is, for every regular value y € N there exists a neighborhood V'
of y, such that all 3 € V are regular values and #f~!(y) = #f7*(v/).

c) If the space of regular values is connected, then #f~1(y) is constant
for all regular values.

Solution. a) As y is a regular value of f, we know that df, is surjective
for all z € f~'(y) and since M and N have the same dimension df, is
bijective. Therefore f is locally a diffeomorphism, that is, there exist an
open neighborhood U, of z and an open neighborhood V, of y such that
flu,: Uy — V, is a diffeomorphism. In particular U, N f~(y) = {z}.

Moreover f is continuous and {y} is closed in N, so f~*(y) C M is closed
and hence compact. This implies that the open cover {Uy,},ep-1(,) of [ (y)
admits a finite subcover {U,,}" ,. Together with the above observation we
conclude that
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and hence f~'(y) is finite.

b) Let f~(y) = {x1,...,2,} with U; 2 2; open and U;NU; = 0, such that
flu,: Uy — V; is a diffeomorphism (as above, restricting the neighborhoods
to make them pairwise disjoint, if necessary).

The set A == M\ |J_, U; is closed and hence compact. It follows that
f(A) is compact and thus closed. Hence its complement W = N\ f(A) is
open and y € W, since AN f~1(y) = 0.

We define V := (;_, V;NW, which is an open neighborhood of y with the
additional property that for all § € V' the preimage is contained in (J]_, U;.
Therefore it holds that
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so #f 7 Hy) = #f71(v'). Moreover all the z; (and hence the ') are regular,
as flu,: Ui — V; is a diffeomorphism.

c) Let R be the set of all regular values of f. From b) it follows that the
map g: R — Z, y — #f!(y) is continuous. Thus g(R) is connected, that is,
g is constant on R.

2. Fundamental Theorem of Algebra

For a non-constant polynomial P over C we consider the map P: CP' — CP*
defined by P([z: 1]) = [P(z) : 1] and P([1: 0]) :==[1: 0].

a) Prove that P is a smooth map.
b) Prove that the space of regular values of P is connected.

¢) Deduce the Fundamental Theorem of Algebra: every complex non-
constant polynomial P has a zero in C.

Hint: Tt suffices to show that P: CP* — CP" is surjective.

Solution. a) Suppose that P(z) = ap2" + a12""" + ... + a, with ag # 0.
Notice that P(U;) C Uy and P is smooth on CIP’l \A{[1: 0]} = Uy since

¢10Podrl(z) = P(2).

It remains to check the smoothness of P at [1: 0] € Uy = ¢;'(C). Note that
P([1:0]) =[1:0] € Uy and ¢y 0 P o ¢ (0) = 0.

Moreover for z # 0 ¢g'(2) = [1:2] = [2:1] and P(}) = L(ag+--- +
a,z"), which is not zero for z in a neighborhood of 0 € C small enough. Thus
Pogyl(z) = P([L:1]) =[P(}):1] € U and

z
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Both expressions for z = 0 and z # 0 (in a neighborhood of 0) coincide and
show that ¢go Po ¢y " is smooth around 0, hence P is smooth around [1:0].

b)Singular points of P in CP*\ {[1 : 0]} correspond to zeroes of P'(z).
As these are only finitely many, it follows that P as only finitely many
singular values {yi,...,y,}. Then it is known that CP'\ {y1,...,yn} =
S2\ {v},...,y.} is connected.

¢) From b) and Exercise 2b) we know that #P~(y) is constant for all
regular values. Suppose that P is not surjective. Then there exists y € CP*
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with P~1(y') = (). This is a regular value and hence we obtain P~!(y) = 0
for all regular values y € CP'. But then P(CP!) is finite (see b) and so P is
constant. Contradiction, thus Pis surjective.

In particular there exists z € C with P([z : 1]) = [P(2) : 1] = [0 : 1], that
is, P(z) = 0.

3. Mapping Degree

Let M C R3 be a compact, connected surface (without boundary) with
exterior Gauss map N: M — S2. Prove that

deg(N) = Sx(M).

Hint: Use Exercise 3 of Sheet 7.

Solution. Note that p € M is a regular point of N if and only if K(p) # 0,
since K (p) = det(—dN,). Moreover

+1, K(p) >0,

sen(dh,) = {—1, K(p) < 0.

We define M, ={pe M : K(p) >0} and M_:={pe M: K(p) <0}
By the Theorem of Gauss-Bonnet and Exercise 3 of Sheet 7 we obtain

ZWX(M):/MKdA:/M |K\dA—/M |K|dA = A(N|a,) — AN |y ).

Now, let R C S? be set of all regular values of N.
The area of N is counted with multiplicities and from Sard’s Theorem
almost every value of N is regular, hence we compute

A(N|ar,) — A(N|ar) = /

N(My)

AN (0)dA(g) - / 4N|37 (q)dA(g)

N(M_)

_ / AN (g)dA(g) / #N13/ (9)dA(q)
N(M4)NR N(M-)NR

= [ (#3950 - #3131 @) 44(0)
—deg N ’

= A(S%)deg N = 4n deg N,

hence 2wy (M) = 4w deg N and therefore deg(N) = 3x(M).



