Prof. Dr. Joaquim Serra

Solutions 10

1. Regular Values

Let M and N be manifolds of the same dimension with M compact and let $f: M \rightarrow N$ be a smooth map. Let $y \in N$ be a regular value of f. Prove the following statements.
a) The preimage $f^{-1}(y)$ has only finitely many elements.
b) The number of elements in the fiber over y is locally constant in N. That is, for every regular value $y \in N$ there exists a neighborhood V of y, such that all $y^{\prime} \in V$ are regular values and $\# f^{-1}(y)=\# f^{-1}\left(y^{\prime}\right)$.
c) If the space of regular values is connected, then $\# f^{-1}(y)$ is constant for all regular values.

Solution. a) As y is a regular value of f, we know that $d f_{x}$ is surjective for all $x \in f^{-1}(y)$ and since M and N have the same dimension $d f_{x}$ is bijective. Therefore f is locally a diffeomorphism, that is, there exist an open neighborhood U_{x} of x and an open neighborhood V_{x} of y such that $\left.f\right|_{U_{x}}: U_{x} \rightarrow V_{x}$ is a diffeomorphism. In particular $U_{x} \cap f^{-1}(y)=\{x\}$.

Moreover f is continuous and $\{y\}$ is closed in N, so $f^{-1}(y) \subset M$ is closed and hence compact. This implies that the open cover $\left\{U_{x}\right\}_{x \in f^{-1}(y)}$ of $f^{-1}(y)$ admits a finite subcover $\left\{U_{x_{i}}\right\}_{i=1}^{n}$. Together with the above observation we conclude that

$$
f^{-1}(y)=f^{-1}(y) \cap \bigcup_{i=1}^{n} U_{x_{i}}=\bigcup_{i=1}^{n}\left(U_{x_{i}} \cap f^{-1}(y)\right)=\bigcup_{i=1}^{n}\left\{x_{i}\right\}=\left\{x_{1}, \ldots, x_{n}\right\}
$$

and hence $f^{-1}(y)$ is finite.
b) Let $f^{-1}(y)=\left\{x_{1}, \ldots, x_{n}\right\}$ with $U_{i} \ni x_{i}$ open and $U_{i} \cap U_{j}=\emptyset$, such that $\left.f\right|_{U_{i}}: U_{i} \rightarrow V_{i}$ is a diffeomorphism (as above, restricting the neighborhoods to make them pairwise disjoint, if necessary).

The set $A:=M \backslash \bigcup_{i=1}^{n} U_{i}$ is closed and hence compact. It follows that $f(A)$ is compact and thus closed. Hence its complement $W:=N \backslash f(A)$ is open and $y \in W$, since $A \cap f^{-1}(y)=\emptyset$.

We define $V:=\bigcap_{i=1}^{n} V_{i} \cap W$, which is an open neighborhood of y with the additional property that for all $y^{\prime} \in V$ the preimage is contained in $\bigcup_{i=1}^{n} U_{i}$. Therefore it holds that

$$
f^{-1}\left(y^{\prime}\right)=f^{-1}\left(y^{\prime}\right) \cap \bigcup_{i=1}^{n} U_{i}=\bigcup_{i=1}^{n}\left(U_{i} \cap f^{-1}\left(y^{\prime}\right)\right)=\bigcup_{i=1}^{n}\left\{x_{i}^{\prime}\right\}=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}
$$

so $\# f^{-1}(y)=\# f^{-1}\left(y^{\prime}\right)$. Moreover all the x_{i}^{\prime} (and hence the y^{\prime}) are regular, as $\left.f\right|_{U_{i}}: U_{i} \rightarrow V_{i}$ is a diffeomorphism.
c) Let R be the set of all regular values of f. From b) it follows that the map $g: R \rightarrow \mathbb{Z}, y \mapsto \# f^{-1}(y)$ is continuous. Thus $g(R)$ is connected, that is, g is constant on R.

2. Fundamental Theorem of Algebra

For a non-constant polynomial P over \mathbb{C} we consider the map $\widetilde{P}: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ defined by $\widetilde{P}([z: 1]):=[P(z): 1]$ and $\widetilde{P}([1: 0]):=[1: 0]$.
a) Prove that \widetilde{P} is a smooth map.
b) Prove that the space of regular values of \widetilde{P} is connected.
c) Deduce the Fundamental Theorem of Algebra: every complex nonconstant polynomial P has a zero in \mathbb{C}.

Hint: It suffices to show that $\widetilde{P}: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ is surjective.
Solution. a) Suppose that $P(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$ with $a_{0} \neq 0$.
Notice that $\widetilde{P}\left(U_{1}\right) \subset U_{1}$ and \widetilde{P} is smooth on $\mathbb{C P}^{1} \backslash\{[1: 0]\}=U_{1}$ since

$$
\phi_{1} \circ \widetilde{P} \circ \phi_{1}^{-1}(z)=P(z) .
$$

It remains to check the smoothness of \widetilde{P} at $[1: 0] \in U_{0}=\phi_{0}^{-1}(\mathbb{C})$. Note that $\widetilde{P}([1: 0])=[1: 0] \in U_{0}$ and $\phi_{0} \circ \widetilde{P} \circ \phi_{0}^{-1}(0)=0$.

Moreover for $z \neq 0 \phi_{0}^{-1}(z)=[1: z]=\left[\frac{1}{z}: 1\right]$ and $P\left(\frac{1}{z}\right)=\frac{1}{z^{n}}\left(a_{0}+\cdots+\right.$ $a_{n} z^{n}$), which is not zero for z in a neighborhood of $0 \in \mathbb{C}$ small enough. Thus $\widetilde{P} \circ \phi_{0}^{-1}(z)=\widetilde{P}\left(\left[\frac{1}{z}: 1\right]\right)=\left[P\left(\frac{1}{z}\right): 1\right] \in U_{0}$ and

$$
\phi_{0} \circ \widetilde{P} \circ \phi_{0}^{-1}(z)=\frac{1}{P\left(\frac{1}{z}\right)}=\frac{z^{n}}{a_{0}+a_{1} z+\ldots+a_{n} z^{n}} .
$$

Both expressions for $z=0$ and $z \neq 0$ (in a neighborhood of 0) coincide and show that $\phi_{0} \circ \widetilde{P} \circ \phi_{0}^{-1}$ is smooth around 0 , hence \widetilde{P} is smooth around [1:0].
b) Singular points of \widetilde{P} in $\mathbb{C P}^{1} \backslash\{[1: 0]\}$ correspond to zeroes of $P^{\prime}(z)$. As these are only finitely many, it follows that \widetilde{P} as only finitely many singular values $\left\{y_{1}, \ldots, y_{n}\right\}$. Then it is known that $\mathbb{C P}^{1} \backslash\left\{y_{1}, \ldots, y_{n}\right\} \cong$ $S^{2} \backslash\left\{y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\}$ is connected.
c) From b) and Exercise 2 b) we know that $\# \widetilde{P}^{-1}(y)$ is constant for all regular values. Suppose that \widetilde{P} is not surjective. Then there exists $y^{\prime} \in \mathbb{C P}^{1}$

Prof. Dr. Joaquim Serra
with $\widetilde{P}^{-1}\left(y^{\prime}\right)=\emptyset$. This is a regular value and hence we obtain $\widetilde{P}^{-1}(y)=\emptyset$ for all regular values $y \in \mathbb{C P}^{1}$. But then $\widetilde{P}\left(\mathbb{C P}^{1}\right)$ is finite (see b) and so P is constant. Contradiction, thus \widetilde{P} is surjective.

In particular there exists $z \in \mathbb{C}$ with $\widetilde{P}([z: 1])=[P(z): 1]=[0: 1]$, that is, $P(z)=0$.

3. Mapping Degree

Let $M \subset \mathbb{R}^{3}$ be a compact, connected surface (without boundary) with exterior Gauss map $N: M \rightarrow S^{2}$. Prove that

$$
\operatorname{deg}(N)=\frac{1}{2} \chi(M) .
$$

Hint: Use Exercise 3 of Sheet 7.
Solution. Note that $p \in M$ is a regular point of N if and only if $K(p) \neq 0$, since $K(p)=\operatorname{det}\left(-d N_{p}\right)$. Moreover

$$
\operatorname{sgn}\left(d N_{p}\right)= \begin{cases}+1, & K(p)>0 \\ -1, & K(p)<0\end{cases}
$$

We define $M_{+}:=\{p \in M: K(p)>0\}$ and $M_{-}:=\{p \in M: K(p)<0\}$.
By the Theorem of Gauss-Bonnet and Exercise 3 of Sheet 7 we obtain

$$
2 \pi \chi(M)=\int_{M} K \mathrm{~d} A=\int_{M_{+}}|K| \mathrm{d} A-\int_{M_{-}}|K| \mathrm{d} A=A\left(\left.N\right|_{M_{+}}\right)-A\left(\left.N\right|_{M_{-}}\right) .
$$

Now, let $R \subset S^{2}$ be set of all regular values of N.
The area of N is counted with multiplicities and from Sard's Theorem almost every value of N is regular, hence we compute

$$
\begin{aligned}
A\left(\left.N\right|_{M_{+}}\right)-A\left(\left.N\right|_{M_{-}}\right) & =\left.\int_{N\left(M_{+}\right)} \# N\right|_{M_{+}} ^{-1}(q) d A(q)-\left.\int_{N\left(M_{-}\right)} \# N\right|_{M_{-}} ^{-1}(q) d A(q) \\
& =\left.\int_{N\left(M_{+}\right) \cap R} \# N\right|_{M_{+}} ^{-1}(q) d A(q)-\left.\int_{N\left(M_{-}\right) \cap R} \# N\right|_{M_{-}} ^{-1}(q) d A(q) \\
& =\int_{R} \underbrace{\left(\left.\# N\right|_{M_{+}} ^{-1}(q)-\left.\# N\right|_{M_{-}} ^{-1}(q)\right)}_{=\operatorname{deg} N} d A(q) \\
& =A\left(S^{2}\right) \operatorname{deg} N=4 \pi \operatorname{deg} N,
\end{aligned}
$$

hence $2 \pi \chi(M)=4 \pi \operatorname{deg} N$ and therefore $\operatorname{deg}(N)=\frac{1}{2} \chi(M)$.

