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Solution 11

For each of the following multiple choice questions, choose the correct answer.

1. The radius of the osculating circle at a point of the helix c(t) := (r cos t, r sin t, t) is:

(a) r
1+r2

.

√
(b) 1+r2

r
.

(c) r.

(d) 1
r
.

(e)
√
1+r2

r
.

Solution. The parametrization has constant speed |c′| = |(−r sin t, r cos t, 1)| =
√

1 + r2.

The accelaration for a unit speed parametrization is then |c′′|
1+r2

= r
1+r2

and the radius of
curvature is the inverse of this.

2. Let M be a smooth surface in R3 with Gauss curvature K and mean curvature H.
Which of the following relations is always true?

(a) H ≥ K.

(b) H ≤ K.

(c) H2 ≤ K.

√
(d) H2 ≥ K.

(e) H2 = K2.

Solution. If k1, k2 denote the principal curvatures ofM , thenK = k1k2 andH = 1
2
(k1+k2).

We compute

4H2 = (k1 + k2)
2 = k21 + k22 + 2k1k2 = (k1 − k2)2 + 4k1k2 ≥ 4k1k2 = 4K.
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3. Consider the following curve in R3:

γ(t) =
(
3 cos(t/5), 4 cos(t/5), 5 sin(t/5)

)
.

Which of the following vectors is the binormal B of γ?

√
(a) (4

5
,−3

5
, 0).

(b) (0, 4
5
,−3

5
).

(c) (1, 0, 0).

(d) (−3
5
, 4
5
).

(e)
(
− 3

5
sin( t

5
),−4

5
sin( t

5
), cos( t

5
)
)
.

Solution. We compute

γ′(t) =
(
− 3

5
sin( t

5
),−4

5
sin( t

5
), cos( t

5
)
)

γ′′(t) =
(
− 3

25
cos( t

5
),− 4

25
cos( t

5
),−1

5
sin( t

5
)
)

|γ′′(t)| =
(
( 9
252

+ 16
252

) cos( t
5
)2 + 1

25
sin( t

5
)2
)1/2

= 1
5

Thus the Frenet frame (T,N,B) = (e1, e2, e3) of γ is given by

e1(t) = γ′(t) =
(
− 3

5
sin( t

5
),−4

5
sin( t

5
), cos( t

5
)
)

e2(t) =
γ′′(t)

|γ′′(t)|
=
(
− 3

5
cos( t

5
),−4

5
cos( t

5
),− sin( t

5
)
)

e3 = e1 × e2 = (4
5
,−3

5
, 0).
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4. Let C ⊂ R3 be the cylinder in R3, parametrized as

f(u, v) =
(

cos(u), sin(u), v
)
.

What are the correct values of the Gauss curvature K and mean curvature H at the point
(
√

2/2,
√

2/2, 100) ∈ C (with respect to the outward pointing Gauss map) ?

(a) K = 0, H = 0.

√
(b) K = 0, H = −1

2
.

(c) K = −1, H = 0.

(d) K = 0, H = 1.

(e) K = 1, H = −1.

Solution The principal curvatures are k1 = −1 and k2 = 0, thus K = 0 and H = −1
2
.

5. Consider a “quadrilateral” region of area A in a 2-sphere of radius r (connected region
bounded by four great circular arcs). The sum of its interior angles is:

(a) 2π − A/r2.

(b) π − A.

√
(c) 2π + A/r2.

(d) 2πr2 + A.

(e) 2π(1 + A/r2).

Solution The sum of the angles of a spherical triangle in a sphere of radius r is π+A/r2.
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6. Let M ⊂ R3 be the following smooth surface:

What is the degree of the outward pointing normal red vector field X?

(a) deg(X) = 0.

(b) deg(X) = 1.

(c) deg(X) = 2.

(d) deg(X) = −1.

√
(e) deg(X) = −2.

Solution Recall that the degree is invariant under smooth homotopy and independent
of the point (of S2 in this case) chosen to compute it. So, it is enough to compute the
degree for our favourite drawing of the surface and choosing the value ν0 ∈ S2 at our best
convenience. For instance, looking at the figure

we see that {p1, p2, p3, p4} is the pre-image of some ν0 on the sphere. Now, the Gaussian
curvature at p1 is > 0, but the Gaussian curvature is < 0 at p2, p3, p4. So the degree is
1− 3 = −2.
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7. Consider the torus of revolution f(x, y) =
(

cosx(−R+r cos y), sinx(−R+r cos y), r sin y
)
,

R > r, drawn below:

Its Gauss’ curvatures at p = (−R− r, 0, 0) and p′ = (−R + r, 0, 0) are

(a) 1
r
√
R2+r2

and −1
r
√
R2−r2 , resp.

(b) 1
rR

and −1
rR

, resp.

(c) Both equal, in absolute value, to 1√
rR

.

(d) Both equal, in absolute value, to 1
rR

.

√
(e) 1

r(R+r)
and −1

r(R−r) , resp.

Solution At the point p both principal curvatures have the same sign. One is equal
in absolute value to 1

r
and the other to 1

R+r
. At p′ the principal curvatures have opposite

signs. One is equal in absolute value to 1
r

and the other to 1
R−r .
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8. Consider again the torus from question 7. The mean curvature at the point q = (−R+
r cosα, 0, r sinα) with respect to the outwards normal (pointing towards the unbounded
component of R3 \ f([0, 2π]2) ) is:

(a) 1
2

(
− 1

r
+ 1

R−r cosα

)
.

(b) 1
2

(
− 1

r
+ sinα

R−r cosα

)
.

(c) 1
2

(
− 1

r
+ tanα

R−r

)
.

√
(d) 1

2

(
− 1

r
+ cosα

R−r cosα

)
.

(e) 1
2

(
− 1

r
+ tanα

R+r

)
.

Solution One principal curvature at any point is −1
r
. To compute the orthogonal one

at q we consider the circle γ(t) = (cos t(−R + r cosα), sin t(−R + r cosα), r sinα). Its
curvature is 1/(R − r cosα), so the normal curvature is cosα

R−r cosα . The mean curvature is

then the average of −1
r

and cosα
R−r cosα .

9. Consinder again the torus from question 7. When the point q is rotated about the x3
axis it generates the curve γ(t) = (cos t(−R+ r cosα), sin t(−R+ r cosα), r sinα), which is
contained in the torus. Given a tangent vector X at q consider its parallel transport along
γ for one full turn (t ∈ [0, 2π]), producing a new tangent vector Y at q. The angle between
X and Y is:

(a) αR
r

.

√
(b) 2π sinα.

(c) tanαR
r

.

(d) 2π cosα.

(e) sinα.

Solution Consider the cone tangent to the torus along γ. It is a cone of revolution
(also with respect the x3 axis) and the angle of its generating lines of the cone and the x3
axis is sinα. Hence when “opening” the cone (as we saw in the lecture in the it becomes
a flat example of Foucault’s pendulum) it becomes a flat circular sector of angle 2π sinα.
Hence, since parallel transport is trivial for the flat surface, we see that the angle between
the transported vector and the original one is 2π sinα.
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10. Consider a smooth surface S obtained by gluing a torus (minus a disk) and a rectangular
piece of plane (minus a disk), as in the figure. While the torus part was stretched in order
to be tangent to the plane, the planar part was kept exactly flat.

Then
∫
S
KdA is

(a) 4π.

√
(b) −4π.

(c) 2π.

(d) −2π.

(e) It depends on the curve bounding the planar piece of surface

Solution Consider for instance the convex envelope of the torus from question 7. It
has flat bottom and top parts. Removing a Disk from the flat top and glueing it to the
flat piece S we obtain a topological torus. Hence the integral of K on the new surface is 0.
However the integral in the convex envelope of the torus is 4π, so the integral of K on S
is −4π.
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