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Solutions 2

1. Characterization of convex curves

Let ¢ € C?([0, L], R?) be a simply C?-closed curve parametrized by arc-length.
Show that the following two statements are equivalent:

(i) The curvature ko, of ¢ doesn’t change sign, that is, ko () > 0 for all
t€10,L] or Koy <0 for all ¢ € [0, L].

(ii) The curve c is conver, that is, the image of ¢ is the boundary of a convex
subset C' C R?.

Solutionﬂ We begin by noticing that ¢ is convex if and only if for each ¢ € [0, L]
the curve lies in one of the closed half-planes determined by the tangent line at
c(t).

Let ¢ = ey: [0, L] — S! be the tangent indicatrix and let 6: [0, L] — R
be a continuous (hence differentiable, as seen in class) polar angle function for
e1, that is,

e1(s) = (cosd(s),sinf(s))

for all s € [0, L]. Then
é1(s) = 0'(s)(—sinf(s),cos 0(s)) = 0'(s)ea(s)

and using the first Frenet equation we conclude that 6’ = ko, thus

/0 Kor(s)ds = 6(t) — 6(0).

This shows that the condition that k.. doesn’t change sign is equivalent to 6
being monotonic.

We now prove (i) = (i7). Suppose that ko, doesn’t change sign. Without
loss of generality we might assume that it’s always > 0 and 6 is non-decreasing.
Assume that ¢ is not convex. Then there exist ty € [0, L] such that points of
¢([0, L]) can be found on both sides of the tangent line T" at c(tg). Denote by
n = ¢&(tg)/|¢(to)| the normal vector to ¢ at ¢y and define h: [0, L] — R by

h(t) = {(c(t) — c(to), n).

The map h measures the distance of ¢(t) from T'. Since [0, L] is compact and ¢
runs on both sides of T, the map h has a maximum at t; # ¢ty and a minimum
at t2 75 t() with h/(tl) = h/(tg) =0.

Therefore {(¢(tg),n) = {(¢(t1),n) = (¢(tz2),n) = 0, that is, ¢(to), e(t1), ¢(t2)
are parallel (but with the three tangent lines at c(tg), c(t1) and c(t2) pairwise
distinct) and so there are s; < sa € {to,t1,t2} such that ¢(s1) = ¢(s2).

Since 6 is non-decreasing this shows that 6(s2) — 6(s1) = 27k for some
k € Np. The Theorem of turning tangents, together with the fact that 6 is
non-decreasing, implies that k is either 0 or 1.

If £ = 0 then 6 is constant on [s1,ss], which means that c¢([s1,s2]) is a
straight line parallel to T'; this contradicts the fact that the three tangent lines
are different.

1The reader is advised: some pictures might be helpful.
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If k =1 then 6 must be constant on [0, s1] and on [sg, L], which implies that
c is a straight line from one of the s;’s and the remaining ¢;. Again this is a
contradiction.

We now prove (i) = (i). Suppose that ¢ is convex and that ko, changes sign.
Then there are t1 < to in [0, L] with 6(t1) = 6(t2) and 6 not constant on [t1, ta].
By the Theorem of turning tangents ¢ maps surjectively onto S!, so there exists
ts3 € [O,L] with ¢t = —C(tg).

If the tangent lines at ¢(t1) , c(t2) and c(t3) are pairwise distinct, then they
are parallel and one of them lies between the other two. This can’t be the case
since ¢ is convex, thus two of the tangent lines coincide and there are points
p,q € {c(t1), c(t2), c(ts)} lying on the same tangent line.

We claim that the arc of ¢ connecting p to ¢ is the straight line segment pg
from p to g. Suppose that r € pgq is not on ¢ and denote by S the straight line
perpendicular to pg at r.

Since p and ¢ lie on distinct sides of S, by convexity we know that S is
nowhere tangent to c. Thus S intersect ¢ in at least two points, say x and y,
where x is the nearest point to r. Then the tangent line to ¢ at x has y on one
side and at least one of p and g o the other, contradicting convexity.

Hence r doesn’t exist, the arc of ¢ connecting p to ¢ is given by pg and p, q
must be ¢(t1), c(t2). In paticular 6 is constant on [t1,¢s], contradiction.
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2. Submanifolds

Prove that the following matrix groups are submanifolds of R™*"™:
(i) SL(n,R) :={A € R"™"™ : det A =1},
(ii) SO(n,R) = {A € GL(n,R) : A1 =A% det A =1}.

Solution. The idea is to write SL(n,R) and SO(n,R) as preimages of regular
values of smooth maps.

(i) Consider the smooth map F': R"*"™ — R, A — det A. Notice that F'
is smooth and SL(n,R) = F~1(1) so we want to show that 1 is a regular
value for F, that is, D4 F: R™*™ — R is surjective for all A in SL(n,R).
Since R is one dimensional it suffices to show that D4 F' is not zero for all
A € SL(n,R). Indeed

DaF(A) = 2| F(A+14)

= 2| det(A(L+1)

o t:O( + )" det

d
=—| (140"
dtt:o( +1)

=n#0.

(ii) Consider the open subset W := {4 € R"*™ : det A > 0} C R™*™ and the
smooth map F: W — R™"*+1)/2 = Symm(n), A — AAT. Notice that

FHI) ={AcR™ . detA>0,AA" =T}
={AcR™" . detA=1,AAT =1}
= SO(n,R).
We want to show that I is a regular value of F', that is, Do F': R"*" —
R™("+1)/2 is surjective for all A in SO(n,R). For B € R™*™ we compute

_ d
~ dtli=o
_d
T dtli=o
_d
T dt =0
_d
T dtli=o
= BAT + AB".

DAF(B) F(A+tB)
(A+tB)(A+tB)T

(A+tB)(AT +tB")

AAT + t(BAT + AB™) +-+*BBT

Hence given any X in R™"+1)/2 = Symm(n), set B = %XA7 then
1 1 1 1
D,F(B) = 5XAAT + A(§XA)T = 5XAAT + 5AATXT =X.

This shows that D4 F is surjective for all A € F~1(I) and SO(n,R) is a
submanifold of R™*".
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3. Tangent bundle

Let M C R™ be an m-dimensional submanifold. Show that the tangent bundle

T™ = | J {p} x TM,
peEM

is a 2m-dimensional submanifold of R2".

Solution. TM C R?" is a 2m-submanifold of R?" if and only if for all (pg, Xo) €
TM there exist open sets U C R?™, V C R?", an immersion f: U — R?" such
that (po, Xo) € f(U)=TM NV and f: U — TM NV is a homeomorphism.

Let (pog,Xo) € TM then there exists a local parametrization: open sets
Up C R™, Vy C Rn, an immersion ¢: Uy — R™ with py € p(Uy) = M NV, and
p: Uy — M NV is a homeomorphism.

We define a local parametrization of TM at (pg, Xo) as follows: let U =
Up xR™ CR?>™, V :=Vy x R* C R?" and f: U — R?" defined by

f(@,8) = (p(2), Dap(£))-
Since ¢ is smooth, the same holds for f. The derivative of f at (x,&) is given by

D,y 0
D) f = ( y wa) :

because D¢(Dyp) = Dy by linearityﬂ of D,p. As ¢ is an immersion D,y has
rank m, so D, ¢ f has rank 2m and we conclude that f is an immersion.

Moreover
FU)= [0 xR™) = [ {p(@)} x Dyp®™) = ] {p}xTM,
z€Uy p€p(Uo)
U  xTM, =TMn (Vo xR") =TMNV
peEMNVy

and (po, Xo) € f(U).
In order to show that f: U — TM NV is a homeomorphism, consider
g TMNV —U:

9(p, X) = (#7(p), Do (X).
and D,p~! are continuous and so is g. Moreover
foglp, X) = f(¢™" (), Dpe™ (X))
= (P, Dy-1(») ¢ Dy (X))
= (p. Dp(p o™ )(X))
= (», )

The functions ¢ 1

and similarly

go f(x,€) = g(e(x), Dap(€)) = (¢ 0 @(x), Dy(ay ' Dap(€)) = (2,8).

This shows that f~! = g is continuous.
2

De(Dap)(X) = wol&+1X) = | Duol€) + tDuo(X) = Daso(X).

i
dt It=



