Solutions 2

1. Characterization of convex curves

Let $c \in C^{2}\left([0, L], \mathbb{R}^{2}\right)$ be a simply C^{2}-closed curve parametrized by arc-length. Show that the following two statements are equivalent:
(i) The curvature $\kappa_{\text {or }}$ of c doesn't change sign, that is, $\kappa_{\text {or }}(t) \geq 0$ for all $t \in[0, L]$ or $\kappa_{\text {or }} \leq 0$ for all $t \in[0, L]$.
(ii) The curve c is convex, that is, the image of c is the boundary of a convex subset $C \subset \mathbb{R}^{2}$.

Solution ${ }^{1}$ We begin by noticing that c is convex if and only if for each $t \in[0, L]$ the curve lies in one of the closed half-planes determined by the tangent line at $c(t)$.

Let $\dot{c}=e_{1}:[0, L] \longrightarrow S^{1}$ be the tangent indicatrix and let $\theta:[0, L] \longrightarrow \mathbb{R}$ be a continuous (hence differentiable, as seen in class) polar angle function for e_{1}, that is,

$$
e_{1}(s)=(\cos \theta(s), \sin \theta(s))
$$

for all $s \in[0, L]$. Then

$$
\dot{e}_{1}(s)=\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s))=\theta^{\prime}(s) e_{2}(s)
$$

and using the first Frenet equation we conclude that $\theta^{\prime}=\kappa_{\text {or }}$, thus

$$
\int_{0}^{t} \kappa_{\text {or }}(s) \mathrm{d} s=\theta(t)-\theta(0)
$$

This shows that the condition that $\kappa_{\text {or }}$ doesn't change sign is equivalent to θ being monotonic.

We now prove $(i) \Rightarrow(i i)$. Suppose that $\kappa_{\text {or }}$ doesn't change sign. Without loss of generality we might assume that it's always ≥ 0 and θ is non-decreasing. Assume that c is not convex. Then there exist $t_{0} \in[0, L]$ such that points of $c([0, L])$ can be found on both sides of the tangent line T at $c\left(t_{0}\right)$. Denote by $n:=\ddot{c}\left(t_{0}\right) /\left|\ddot{c}\left(t_{0}\right)\right|$ the normal vector to c at t_{0} and define $h:[0, L] \longrightarrow \mathbb{R}$ by

$$
h(t):=\left\langle c(t)-c\left(t_{0}\right), n\right\rangle .
$$

The map h measures the distance of $c(t)$ from T. Since $[0, L]$ is compact and c runs on both sides of T, the map h has a maximum at $t_{1} \neq t_{0}$ and a minimum at $t_{2} \neq t_{0}$ with $h^{\prime}\left(t_{1}\right)=h^{\prime}\left(t_{2}\right)=0$.

Therefore $\left\langle\dot{c}\left(t_{0}\right), n\right\rangle=\left\langle\dot{c}\left(t_{1}\right), n\right\rangle=\left\langle\dot{c}\left(t_{2}\right), n\right\rangle=0$, that is, $\dot{c}\left(t_{0}\right), \dot{c}\left(t_{1}\right), \dot{c}\left(t_{2}\right)$ are parallel (but with the three tangent lines at $c\left(t_{0}\right), c\left(t_{1}\right)$ and $c\left(t_{2}\right)$ pairwise distinct) and so there are $s_{1}<s_{2} \in\left\{t_{0}, t_{1}, t_{2}\right\}$ such that $\dot{c}\left(s_{1}\right)=\dot{c}\left(s_{2}\right)$.

Since θ is non-decreasing this shows that $\theta\left(s_{2}\right)-\theta\left(s_{1}\right)=2 \pi k$ for some $k \in \mathbb{N}_{0}$. The Theorem of turning tangents, together with the fact that θ is non-decreasing, implies that k is either 0 or 1 .

If $k=0$ then θ is constant on $\left[s_{1}, s_{2}\right]$, which means that $c\left(\left[s_{1}, s_{2}\right]\right)$ is a straight line parallel to T; this contradicts the fact that the three tangent lines are different.

[^0]If $k=1$ then θ must be constant on $\left[0, s_{1}\right]$ and on $\left[s_{2}, L\right]$, which implies that c is a straight line from one of the s_{i} 's and the remaining t_{j}. Again this is a contradiction.

We now prove $(i i) \Rightarrow(i)$. Suppose that c is convex and that $\kappa_{\text {or }}$ changes sign. Then there are $t_{1}<t_{2}$ in $[0, L]$ with $\theta\left(t_{1}\right)=\theta\left(t_{2}\right)$ and θ not constant on $\left[t_{1}, t_{2}\right]$. By the Theorem of turning tangents \dot{c} maps surjectively onto S^{1}, so there exists $t_{3} \in[0, L]$ with $\dot{c} t_{1}=-\dot{c}\left(t_{3}\right)$.

If the tangent lines at $c\left(t_{1}\right), c\left(t_{2}\right)$ and $c\left(t_{3}\right)$ are pairwise distinct, then they are parallel and one of them lies between the other two. This can't be the case since c is convex, thus two of the tangent lines coincide and there are points $p, q \in\left\{c\left(t_{1}\right), c\left(t_{2}\right), c\left(t_{3}\right)\right\}$ lying on the same tangent line.

We claim that the arc of c connecting p to q is the straight line segment $\overline{p q}$ from p to q. Suppose that $r \in \overline{p q}$ is not on c and denote by S the straight line perpendicular to $\overline{p q}$ at r.

Since p and q lie on distinct sides of S, by convexity we know that S is nowhere tangent to c. Thus S intersect c in at least two points, say x and y, where x is the nearest point to r. Then the tangent line to c at x has y on one side and at least one of p and q o the other, contradicting convexity.

Hence r doesn't exist, the arc of c connecting p to q is given by $\bar{p} q$ and p, q must be $c\left(t_{1}\right), c\left(t_{2}\right)$. In paticular θ is constant on $\left[t_{1}, t_{2}\right]$, contradiction.

Prof. Dr. Joaquim Serra

2. Submanifolds

Prove that the following matrix groups are submanifolds of $\mathbb{R}^{n \times n}$:
(i) $\operatorname{SL}(n, \mathbb{R}):=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det} A=1\right\}$,
(ii) $\mathrm{SO}(n, \mathbb{R}):=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{-1}=A^{\mathrm{T}}, \operatorname{det} A=1\right\}$.

Solution. The idea is to write $\mathrm{SL}(n, \mathbb{R})$ and $\mathrm{SO}(n, \mathbb{R})$ as preimages of regular values of smooth maps.
(i) Consider the smooth map $F: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}, A \longmapsto \operatorname{det} A$. Notice that F is smooth and $\mathrm{SL}(n, \mathbb{R})=F^{-1}(1)$ so we want to show that 1 is a regular value for F, that is, $D_{A} F: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$ is surjective for all A in $\operatorname{SL}(n, \mathbb{R})$. Since \mathbb{R} is one dimensional it suffices to show that $D_{A} F$ is not zero for all $A \in \mathrm{SL}(n, \mathbb{R})$. Indeed

$$
\begin{aligned}
D_{A} F(A) & =\left.\frac{d}{d t}\right|_{t=0} F(A+t A) \\
& =\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(A(1+t)) \\
& =\left.\frac{d}{d t}\right|_{t=0}(1+t)^{n} \operatorname{det} A \\
& =\left.\frac{d}{d t}\right|_{t=0}(1+t)^{n} \\
& =n \neq 0
\end{aligned}
$$

(ii) Consider the open subset $W:=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det} A>0\right\} \subset \mathbb{R}^{n \times n}$ and the smooth map $F: W \longrightarrow \mathbb{R}^{n(n+1) / 2} \cong \operatorname{Symm}(n), A \longrightarrow A A^{\mathrm{T}}$. Notice that

$$
\begin{aligned}
F^{-1}(I) & =\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det} A>0, A A^{\mathrm{T}}=I\right\} \\
& =\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det} A=1, A A^{\mathrm{T}}=I\right\} \\
& =\operatorname{SO}(n, \mathbb{R}) .
\end{aligned}
$$

We want to show that I is a regular value of F, that is, $D_{A} F: \mathbb{R}^{n \times n} \longrightarrow$ $\mathbb{R}^{n(n+1) / 2}$ is surjective for all A in $\operatorname{SO}(n, \mathbb{R})$. For $B \in \mathbb{R}^{n \times n}$ we compute

$$
\begin{aligned}
D_{A} F(B) & =\left.\frac{d}{d t}\right|_{t=0} F(A+t B) \\
& =\left.\frac{d}{d t}\right|_{t=0}(A+t B)(A+t B)^{\mathrm{T}} \\
& =\left.\frac{d}{d t}\right|_{t=0}(A+t B)\left(A^{\mathrm{T}}+t B^{\mathrm{T}}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} A A^{\mathrm{T}}+t\left(B A^{\mathrm{T}}+A B^{\mathrm{T}}\right)+t^{2} B B^{\mathrm{T}} \\
& =B A^{\mathrm{T}}+A B^{\mathrm{T}}
\end{aligned}
$$

Hence given any X in $\mathbb{R}^{n(n+1) / 2} \cong \operatorname{Symm}(n)$, set $B:=\frac{1}{2} X A$, then

$$
D_{A} F(B)=\frac{1}{2} X A A^{\mathrm{T}}+A\left(\frac{1}{2} X A\right)^{\mathrm{T}}=\frac{1}{2} X A A^{\mathrm{T}}+\frac{1}{2} A A^{\mathrm{T}} X^{\mathrm{T}}=X
$$

This shows that $D_{A} F$ is surjective for all $A \in F^{-1}(I)$ and $\mathrm{SO}(n, \mathbb{R})$ is a submanifold of $\mathbb{R}^{n \times n}$.

Prof. Dr. Joaquim Serra

3. Tangent bundle

Let $M \subset \mathbb{R}^{n}$ be an m-dimensional submanifold. Show that the tangent bundle

$$
T M:=\bigcup_{p \in M}\{p\} \times T M_{p}
$$

is a $2 m$-dimensional submanifold of $\mathbb{R}^{2 n}$.
Solution. $T M \subset \mathbb{R}^{2 n}$ is a $2 m$-submanifold of $\mathbb{R}^{2 n}$ if and only if for all $\left(p_{0}, X_{0}\right) \in$ $T M$ there exist open sets $U \subset \mathbb{R}^{2 m}, V \subset \mathbb{R}^{2 n}$, an immersion $f: U \longrightarrow \mathbb{R}^{2 n}$ such that $\left(p_{0}, X_{0}\right) \in f(U)=T M \cap V$ and $f: U \longrightarrow T M \cap V$ is a homeomorphism.

Let $\left(p_{0}, X_{0}\right) \in T M$ then there exists a local parametrization: open sets $U_{0} \subset \mathbb{R}^{m}, V_{0} \subset R n$, an immersion $\varphi: U_{0} \longrightarrow \mathbb{R}^{n}$ with $p_{0} \in \varphi\left(U_{0}\right)=M \cap V_{0}$ and $\varphi: U_{0} \longrightarrow M \cap V_{0}$ is a homeomorphism.

We define a local parametrization of $T M$ at $\left(p_{0}, X_{0}\right)$ as follows: let $U:=$ $U_{0} \times \mathbb{R}^{m} \subset \mathbb{R}^{2 m}, V:=V_{0} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ and $f: U \longrightarrow \mathbb{R}^{2 n}$ defined by

$$
f(x, \xi)=\left(\varphi(x), D_{x} \varphi(\xi)\right)
$$

Since φ is smooth, the same holds for f. The derivative of f at (x, ξ) is given by

$$
D_{(x, \xi)} f=\left(\begin{array}{cc}
D_{x} \varphi & 0 \\
* & D_{x} \varphi
\end{array}\right)
$$

because $D_{\xi}\left(D_{x} \varphi\right)=D_{x} \varphi$ by linearity ${ }^{2}$ of $D_{x} \varphi$. As φ is an immersion $D_{x} \varphi$ has rank m, so $D_{x, \xi} f$ has rank $2 m$ and we conclude that f is an immersion.

Moreover

$$
\begin{aligned}
f(U) & =f\left(U_{0} \times \mathbb{R}^{m}\right)=\bigcup_{x \in U_{0}}\{\varphi(x)\} \times D_{x} \varphi\left(\mathbb{R}^{m}\right)=\bigcup_{p \in \varphi\left(U_{0}\right)}\{p\} \times T M_{p} \\
& =\bigcup_{p \in M \cap V_{0}}\{p\} \times T M_{p}=T M \cap\left(V_{0} \times \mathbb{R}^{n}\right)=T M \cap V
\end{aligned}
$$

and $\left(p_{0}, X_{0}\right) \in f(U)$.
In order to show that $f: U \longrightarrow T M \cap V$ is a homeomorphism, consider $g: T M \cap V \longrightarrow U:$

$$
g(p, X):=\left(\varphi^{-1}(p), D_{p} \varphi^{-1}(X)\right)
$$

The functions φ^{-1} and $D_{p} \varphi^{-1}$ are continuous and so is g. Moreover

$$
\begin{aligned}
f \circ g(p, X) & =f\left(\varphi^{-1}(p), D_{p} \varphi^{-1}(X)\right) \\
& =\left(p, D_{\varphi^{-1}(p)} \varphi D_{p} \varphi^{-1}(X)\right) \\
& =\left(p, D_{p}\left(\varphi \circ \varphi^{-1}\right)(X)\right) \\
& =(p, X),
\end{aligned}
$$

and similarly

$$
g \circ f(x, \xi)=g\left(\varphi(x), D_{x} \varphi(\xi)\right)=\left(\varphi^{-1} \circ \varphi(x), D_{\varphi(x)} \varphi^{-1} D_{x} \varphi(\xi)\right)=(x, \xi)
$$

This shows that $f^{-1}=g$ is continuous.

$$
D_{\xi}\left(D_{x} \varphi\right)(X)=\left.\frac{d}{d t}\right|_{t=0} D_{x} \varphi(\xi+t X)=\left.\frac{d}{d t}\right|_{t=0} D_{x} \varphi(\xi)+t D_{x} \varphi(X)=D_{x} \varphi(X)
$$

[^0]: ${ }^{1}$ The reader is advised: some pictures might be helpful.

