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Solutions 2

1. Characterization of convex curves

Let c ∈ C2([0, L],R2) be a simply C2-closed curve parametrized by arc-length.
Show that the following two statements are equivalent:

(i) The curvature κor of c doesn’t change sign, that is, κor(t) ≥ 0 for all
t ∈ [0, L] or κor ≤ 0 for all t ∈ [0, L].

(ii) The curve c is convex, that is, the image of c is the boundary of a convex
subset C ⊂ R2.

Solution.1 We begin by noticing that c is convex if and only if for each t ∈ [0, L]
the curve lies in one of the closed half-planes determined by the tangent line at
c(t).

Let c. = e1 : [0, L] −→ S1 be the tangent indicatrix and let θ : [0, L] −→ R
be a continuous (hence differentiable, as seen in class) polar angle function for
e1, that is,

e1(s) = (cos θ(s), sin θ(s))

for all s ∈ [0, L]. Then

e
.
1(s) = θ′(s)(− sin θ(s), cos θ(s)) = θ′(s)e2(s)

and using the first Frenet equation we conclude that θ′ = κor, thus∫ t

0

κor(s) ds = θ(t)− θ(0).

This shows that the condition that κor doesn’t change sign is equivalent to θ
being monotonic.

We now prove (i) ⇒ (ii). Suppose that κor doesn’t change sign. Without
loss of generality we might assume that it’s always ≥ 0 and θ is non-decreasing.
Assume that c is not convex. Then there exist t0 ∈ [0, L] such that points of
c([0, L]) can be found on both sides of the tangent line T at c(t0). Denote by
n := c

..
(t0)/|c..(t0)| the normal vector to c at t0 and define h : [0, L] −→ R by

h(t) := 〈c(t)− c(t0), n〉.

The map h measures the distance of c(t) from T . Since [0, L] is compact and c
runs on both sides of T , the map h has a maximum at t1 6= t0 and a minimum
at t2 6= t0 with h′(t1) = h′(t2) = 0 .

Therefore 〈c.(t0), n〉 = 〈c.(t1), n〉 = 〈c.(t2), n〉 = 0, that is, c.(t0), c
.
(t1), c

.
(t2)

are parallel (but with the three tangent lines at c(t0), c(t1) and c(t2) pairwise
distinct) and so there are s1 < s2 ∈ {t0, t1, t2} such that c.(s1) = c

.
(s2).

Since θ is non-decreasing this shows that θ(s2) − θ(s1) = 2πk for some
k ∈ N0. The Theorem of turning tangents, together with the fact that θ is
non-decreasing, implies that k is either 0 or 1.

If k = 0 then θ is constant on [s1, s2], which means that c([s1, s2]) is a
straight line parallel to T ; this contradicts the fact that the three tangent lines
are different.

1The reader is advised: some pictures might be helpful.
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If k = 1 then θ must be constant on [0, s1] and on [s2, L], which implies that
c is a straight line from one of the si’s and the remaining tj . Again this is a
contradiction.

We now prove (ii)⇒ (i). Suppose that c is convex and that κor changes sign.
Then there are t1 < t2 in [0, L] with θ(t1) = θ(t2) and θ not constant on [t1, t2].
By the Theorem of turning tangents c. maps surjectively onto S1, so there exists
t3 ∈ [0, L] with c.t1 = −c.(t3).

If the tangent lines at c(t1) , c(t2) and c(t3) are pairwise distinct, then they
are parallel and one of them lies between the other two. This can’t be the case
since c is convex, thus two of the tangent lines coincide and there are points
p, q ∈ {c(t1), c(t2), c(t3)} lying on the same tangent line.

We claim that the arc of c connecting p to q is the straight line segment p̄q
from p to q. Suppose that r ∈ p̄q is not on c and denote by S the straight line
perpendicular to p̄q at r.

S
p

qr

xc

Since p and q lie on distinct sides of S, by convexity we know that S is
nowhere tangent to c. Thus S intersect c in at least two points, say x and y,
where x is the nearest point to r. Then the tangent line to c at x has y on one
side and at least one of p and q o the other, contradicting convexity.

Hence r doesn’t exist, the arc of c connecting p to q is given by p̄q and p, q
must be c(t1), c(t2). In paticular θ is constant on [t1, t2], contradiction.
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2. Submanifolds

Prove that the following matrix groups are submanifolds of Rn×n:

(i) SL(n,R) := {A ∈ Rn×n : detA = 1},

(ii) SO(n,R) := {A ∈ GL(n,R) : A−1 = AT,detA = 1}.

Solution. The idea is to write SL(n,R) and SO(n,R) as preimages of regular
values of smooth maps.

(i) Consider the smooth map F : Rn×n −→ R, A 7−→ detA. Notice that F
is smooth and SL(n,R) = F−1(1) so we want to show that 1 is a regular
value for F , that is, DAF : Rn×n −→ R is surjective for all A in SL(n,R).
Since R is one dimensional it suffices to show that DAF is not zero for all
A ∈ SL(n,R). Indeed

DAF (A) =
d

dt

∣∣∣
t=0

F (A+ tA)

=
d

dt

∣∣∣
t=0

det(A(1 + t))

=
d

dt

∣∣∣
t=0

(1 + t)n detA

=
d

dt

∣∣∣
t=0

(1 + t)n

= n 6= 0.

(ii) Consider the open subset W := {A ∈ Rn×n : detA > 0} ⊂ Rn×n and the
smooth map F : W −→ Rn(n+1)/2 ∼= Symm(n), A −→ AAT. Notice that

F−1(I) = {A ∈ Rn×n : detA > 0, AAT = I}
= {A ∈ Rn×n : detA = 1, AAT = I}
= SO(n,R).

We want to show that I is a regular value of F , that is, DAF : Rn×n −→
Rn(n+1)/2 is surjective for all A in SO(n,R). For B ∈ Rn×n we compute

DAF (B) =
d

dt

∣∣∣
t=0

F (A+ tB)

=
d

dt

∣∣∣
t=0

(A+ tB)(A+ tB)T

=
d

dt

∣∣∣
t=0

(A+ tB)(AT + tBT)

=
d

dt

∣∣∣
t=0

AAT + t(BAT +ABT) + t2BBT

= BAT +ABT.

Hence given any X in Rn(n+1)/2 ∼= Symm(n), set B := 1
2XA, then

DAF (B) =
1

2
XAAT +A(

1

2
XA)T =

1

2
XAAT +

1

2
AATXT = X.

This shows that DAF is surjective for all A ∈ F−1(I) and SO(n,R) is a
submanifold of Rn×n.
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3. Tangent bundle

Let M ⊂ Rn be an m-dimensional submanifold. Show that the tangent bundle

TM :=
⋃
p∈M
{p} × TMp

is a 2m-dimensional submanifold of R2n.

Solution. TM ⊂ R2n is a 2m-submanifold of R2n if and only if for all (p0, X0) ∈
TM there exist open sets U ⊂ R2m, V ⊂ R2n, an immersion f : U −→ R2n such
that (p0, X0) ∈ f(U) = TM ∩ V and f : U −→ TM ∩ V is a homeomorphism.

Let (p0, X0) ∈ TM then there exists a local parametrization: open sets
U0 ⊂ Rm, V0 ⊂ Rn, an immersion ϕ : U0 −→ Rn with p0 ∈ ϕ(U0) = M ∩V0 and
ϕ : U0 −→M ∩ V0 is a homeomorphism.

We define a local parametrization of TM at (p0, X0) as follows: let U :=
U0 × Rm ⊂ R2m, V := V0 × Rn ⊂ R2n and f : U −→ R2n defined by

f(x, ξ) = (ϕ(x), Dxϕ(ξ)).

Since ϕ is smooth, the same holds for f . The derivative of f at (x, ξ) is given by

D(x,ξ)f =

(
Dxϕ 0
∗ Dxϕ

)
,

because Dξ(Dxϕ) = Dxϕ by linearity2 of Dxϕ. As ϕ is an immersion Dxϕ has
rank m, so Dx,ξf has rank 2m and we conclude that f is an immersion.

Moreover

f(U) = f(U0 × Rm) =
⋃
x∈U0

{ϕ(x)} ×Dxϕ(Rm) =
⋃

p∈ϕ(U0)

{p} × TMp

=
⋃

p∈M∩V0

{p} × TMp = TM ∩ (V0 × Rn) = TM ∩ V

and (p0, X0) ∈ f(U).
In order to show that f : U −→ TM ∩ V is a homeomorphism, consider

g : TM ∩ V −→ U :
g(p,X) :=

(
ϕ−1(p), Dpϕ

−1(X)
)
.

The functions ϕ−1 and Dpϕ
−1 are continuous and so is g. Moreover

f ◦ g(p,X) = f
(
ϕ−1(p), Dpϕ

−1(X)
)

=
(
p,Dϕ−1(p)ϕDpϕ

−1(X)
)

=
(
p,Dp(ϕ ◦ ϕ−1)(X)

)
=
(
p,X

)
,

and similarly

g ◦ f(x, ξ) = g
(
ϕ(x), Dxϕ(ξ)

)
=
(
ϕ−1 ◦ ϕ(x), Dϕ(x)ϕ

−1Dxϕ(ξ)
)

= (x, ξ).

This shows that f−1 = g is continuous.
2

Dξ(Dxϕ)(X) =
d

dt

∣∣∣
t=0

Dxϕ(ξ + tX) =
d

dt

∣∣∣
t=0

Dxϕ(ξ) + tDxϕ(X) = Dxϕ(X).
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