Solutions 3

1. Differentiability

Let $M \subset \mathbb{R}^{n}$ be an m-dimensional submanifold, $F: M \longrightarrow \mathbb{R}^{k}$ a map and $p \in M$. Show that the following statements are equivalent.
(i) F is differentiable in p (as defined in the lecture).
(ii) There exists an open neighborhood V of p in \mathbb{R}^{n} and a map $\bar{F}: V \longrightarrow$ \mathbb{R}^{k} differentiable in p with

$$
\left.\bar{F}\right|_{V \cap M}=\left.F\right|_{V \cap M} .
$$

Solution.

$(i) \Rightarrow(i i)$. By definition if F is differentiable at p, then there exist an open set $U \subset \mathbb{R}^{m}$ and a local parametrization $f: U \longrightarrow f(U) \subset M$ with $f(x)=p$ such that $F \circ f: U \longrightarrow \mathbb{R}^{k}$ is differentiable at x. Without loss of generality we might assume that $x=0$.

By the Implicit Function Theorem (injective version, A. 3 on the lecture notes) applied to f, there exist open neighborhoods $V \subset \mathbb{R}^{n}$ of p, $W \subset$ $U \times \mathbb{R}^{n-m}$ of $(0,0)$ and a diffeomorphism $\varphi: V \longrightarrow W$ such that $\varphi(p)=(0,0)$ and $(\varphi \circ f)(x)=(x, 0)$ for all $(x, 0)$ in W.

Denote by $\pi: W \longrightarrow U$ the projection onto the first m-coordinates and set $U^{\prime}:=\pi(W) \subset U$. Let $V^{\prime} \subset V$ be an open neighborhood of p such that $f\left(U^{\prime}\right)=V^{\prime} \cap M$. Notice that $(\varphi \circ f)(x)=(x, 0)$ for all $x \in U^{\prime}$.

Then we define $\bar{F}: V^{\prime} \longrightarrow \mathbb{R}^{k}$ by

$$
\bar{F}:=\left.(F \circ f) \circ \pi \circ \varphi\right|_{V^{\prime}} .
$$

The map \bar{F} is differentiable in p and it agrees with F on $V^{\prime} \cap M$, indeed for $q=f(y) \in V^{\prime} \cap M:$

$$
\bar{F}(q)=F \circ f \circ \pi \circ \varphi \circ f(y)=F \circ f \circ \pi(y, 0)=F \circ f(y)=F(q) .
$$

Remark: We needed to introduce the sets U^{\prime} and V^{\prime} because there might be points $q \in V \cap M$ which are not in $f(W)$ (this is similar to one of the proofs seen in class).
$(i i) \Rightarrow(i)$. Let $V \subset \mathbb{R}^{n}$ be an open neighborhood of p and let $\bar{F}: V \longrightarrow \mathbb{R}^{k}$ be a map which is differentiable at p and such that $\left.\bar{F}\right|_{V \cap M}=\left.F\right|_{V \cap M}$.

Let $f: U \longrightarrow \mathbb{R}^{n}$ be a local parametrization of M at p with $f(x)=p$ and $f(U) \subset V \cap M$. Then $F \circ f=\bar{F} \circ f$ is differentiable at p and so by definition F is differentiable at p.

Prof. Dr. Joaquim Serra

2. Orientability

(i) Let $W \subset \mathbb{R}^{n}$ be an open set, $f: W \longrightarrow \mathbb{R}$ a C^{1}-map and $y \in \mathbb{R}$ a regular value of f. Prove that $M:=f^{-1}(\{y\})$ is an orientable submanifold.
(ii) Prove that the submanifolds $\mathrm{SL}(n, \mathbb{R})$ and $\mathrm{SO}(n, \mathbb{R})$ are orientable.

Solution. (i) By the Regular Value Theorem M is a $(n-1)$-submanifold of \mathbb{R}^{n} so in order to show that it's orientable we'll construct a Gauss map $N: M \longrightarrow S^{n-1}$ (see Lemma 2.9 in the notes).

Since y is a regular value, it holds that $d f_{p}$ has rank 1 for all p in M and in particular $\nabla f(p) \neq 0$. We define

$$
N: M \longrightarrow S^{n-1}, \quad p \longmapsto \frac{\nabla f(p)}{|\nabla f(p)|}
$$

As the gradient, if not zero, is always perpendicular to the level sets of f, this defines the desired Gauss map.
(ii) We showed in Exercise Sheet 2 that $\mathrm{SL}(n, \mathbb{R})=\operatorname{det}^{-1}(1)$ is the preimage of a regular value of a map $\mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$, hence orientability follows from part (i).

For $\operatorname{SO}(n, \mathbb{R})$ we will produce a compatible system of local parametrizations. The proof uses merely the fact that $G:=\operatorname{SO}(n, \mathbb{R})$ is not only a (sub)manifold, but also group, with smooth group operations $(g, h) \mapsto g h$ and $g \mapsto g^{-1}$ (that is, G is a Lie group).

Note first that for any $g \in G$ the left multiplication

$$
L_{g}: G \longrightarrow G, \quad L_{g}(A)=g A,
$$

is a smooth map: clearly the (linear) map $A \mapsto g A$ from $\mathbb{R}^{n \times n}$ to $\mathbb{R}^{n \times n}$ is smooth, and thus the restriction to G is smooth (compare Exercise 1). Similarly, $L_{g^{-1}}$ is smooth, and $L_{g^{-1}} \circ L_{g}=\mathbb{1}_{G}$, so L_{g} is in fact a diffeomorphism of G.

Now pick a basis $\left(X_{1}, \ldots, X_{m}\right)$ of the tangent space $T G_{e}$ at the neutral element, and put $X_{i}(g):=d\left(L_{g}\right)_{e}\left(X_{i}\right)$ for every $g \in G$ and $i=1, \ldots, m$ (in fact, since L_{g} is the restriction of a linear map, $X_{i}(g)$ is just $g X_{i}$, but this irrelevant). Since L_{g} is a diffeomorphism of $G,\left(X_{1}(g), \ldots, X_{m}(g)\right)$ is a basis of $T G_{g}$ for every $g \in G$. Furthermore, every X_{i} is a continuous (in fact, smooth) vector field on G.

For every $g \in G$ there exists a local parametrization

$$
f_{g}: U_{g} \longrightarrow f_{g}\left(U_{g}\right) \subset G
$$

Prof. Dr. Joaquim Serra
such that U_{g} is a connected open neighborhood of $0 \in \mathbb{R}^{m}, f_{g}(0)=g$, and the basis $\left(d\left(f_{g}\right)_{0}\left(e_{1}\right), \ldots, d\left(f_{g}\right)_{0}\left(e_{m}\right)\right)$ of $T G_{g}$ is equivalent to $\left(X_{1}(g), \ldots, X_{m}(g)\right)$. To show that $\left\{f_{g}\right\}_{g \in G}$ is a compatible system, suppose that $g, h \in G$ and $x \in$ $U_{g}, y \in U_{h}$ are such that $f_{g}(x)=f_{h}(y)=: p$. A simple continuity argument, using a curve in U_{g} from 0 to x, shows that the basis $\left(d\left(f_{g}\right)_{x}\left(e_{1}\right), \ldots, d\left(f_{g}\right)_{x}\left(e_{m}\right)\right)$ of $T G_{p}$ is equivalent to $\left(X_{1}(p), \ldots, X_{m}(p)\right)$. Likewise, $\left(d\left(f_{h}\right)_{y}\left(e_{1}\right), \ldots, d\left(f_{h}\right)_{y}\left(e_{m}\right)\right)$ is equivalent to $\left(X_{1}(p), \ldots, X_{m}(p)\right)$, and so

$$
\left(d\left(f_{g}\right)_{x}\left(e_{1}\right), \ldots, d\left(f_{g}\right)_{x}\left(e_{m}\right)\right) \quad \text { and } \quad\left(d\left(f_{h}\right)_{y}\left(e_{1}\right), \ldots, d\left(f_{h}\right)_{y}\left(e_{m}\right)\right)
$$

are equivalent. Put $V:=f_{g}\left(U_{g}\right) \cap f_{h}\left(U_{h}\right)$ and $\psi:=f_{h}^{-1} \circ f_{g}: f_{g}^{-1}(V) \longrightarrow$ $f_{h}^{-1}(V)$. Since $d\left(f_{g}\right)_{x}=d\left(f_{h}\right)_{y} \circ d \psi_{x}$, it follows that $\left(d \psi_{x}\left(e_{1}\right), \ldots, d \psi_{x}\left(e_{m}\right)\right)$ is equivalent to $\left(e_{1}, \ldots, e_{m}\right)$, so $\operatorname{det}\left(d \psi_{x}\right)>0$.

Prof. Dr. Joaquim Serra

3. Angle-preserving parametrization

Let $U \subset \mathbb{R}^{m}$ be an open set and $f: U \longrightarrow \mathbb{R}^{n}$ an immersion. The map f is called angle-preserving if for all $x \in U$ and $\xi, \eta \in T U_{x}$ the angles between ξ, η and $d f_{x}(\xi), d f_{x}(\eta)$ coincide. Here the angles are meant with respect to the standard scalar products on \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.
(i) Show that f is angle-preserving if and only if $g_{i j}=\lambda^{2} \delta_{i j}$, where $g_{i j}$ is the matrix of the first fundamental form of $f, \delta_{i j}$ is the Kronecker delta and $\lambda: U \longrightarrow \mathbb{R}$ is a differentiable function.
(ii) Find an angle-preserving parametrization of the 2-sphere without North and South Pole, $S^{2} \backslash\{N, S\} \subset \mathbb{R}^{3}$, of the form

$$
f(x, y)=\left(\sqrt{1-h^{2}(y)} \cos (x), \sqrt{1-h^{2}(y)} \sin (x), h(y)\right)
$$

where $h: \mathbb{R} \longrightarrow \mathbb{R}$ is an odd function.

Solution.

(i) Notice first that the condition of being angle-preserving corresponds to: for all $x \in U$ and $\xi, \eta \in \mathbb{R}^{m}$

$$
\frac{\left\langle d f_{x}(\xi), d f_{x}(\eta)\right\rangle_{n}}{\left|d f_{x}(\xi)\right|_{n}\left|d f_{x}(\eta)\right|_{n}}=\frac{\langle\xi, \eta\rangle_{m}}{|\xi|_{m}|\eta|_{m}}
$$

where $\langle\cdot, \cdot\rangle_{m}$ and $\langle\cdot, \cdot\rangle_{n}$ denote the Euclidean scalar products in \mathbb{R}^{m} and \mathbb{R}^{n}, respectively (these indices will be omitted in the following).

Suppose that f is angle preserving. Then the matrix of the first fundamental form g of f in x satisfies

$$
\begin{aligned}
g_{i j}(x) & =g_{x}\left(e_{i}, e_{j}\right)=\left\langle d f_{x}\left(e_{i}\right), d f_{x}\left(e_{j}\right)\right\rangle \\
& =\left|d f_{x}\left(e_{i}\right)\right|\left|d f_{x}\left(e_{j}\right)\right|\left\langle e_{i}, e_{j}\right\rangle=\left|d f_{x}\left(e_{i}\right)\right|\left|d f_{x}\left(e_{j}\right)\right| \delta_{i j} .
\end{aligned}
$$

We now claim that $\left|d f_{x}\left(e_{i}\right)\right|=\left|d f_{x}\left(e_{j}\right)\right|$ for all $x \in U$ and i, j. Indeed

$$
\begin{aligned}
\left|d f_{x}\left(e_{i}\right)\right|^{2}-\left|d f_{x}\left(e_{j}\right)\right|^{2} & =\left\langle d f_{x}\left(e_{i}\right), d f_{x}\left(e_{i}\right)\right\rangle-\left\langle d f_{x}\left(e_{j}\right), d f_{x}\left(e_{j}\right)\right\rangle \\
& =\left\langle d f_{x}\left(e_{i}\right)-d f_{x}\left(e_{j}\right), d f_{x}\left(e_{i}\right)+d f_{x}\left(e_{j}\right)\right\rangle \\
& =\left\langle d f_{x}\left(e_{i}-e_{j}\right), d f_{x}\left(e_{i}+e_{j}\right)\right\rangle \\
& =\frac{\left|d f_{x}\left(e_{i}-e_{j}\right)\right| \cdot\left|d f_{x}\left(e_{i}+e_{j}\right)\right|}{\left|e_{i}-e_{j}\right| \cdot\left|e_{i}+e_{j}\right|}\left\langle e_{i}-e_{j}, e_{i}+e_{j}\right\rangle=0 .
\end{aligned}
$$

Thus $g_{i j}=\lambda^{2} \delta_{i j}$ for $\lambda: U \longrightarrow \mathbb{R}, x \mapsto\left|d f_{x}\left(e_{1}\right)\right|^{2}$, which is differentiable.

Prof. Dr. Joaquim Serra
Suppose now that $g_{i j}=\lambda^{2} \delta_{i j}$, then

$$
\frac{\left\langle d f_{x}\left(e_{i}\right), d f_{x}\left(e_{j}\right)\right\rangle}{\left|d f_{x}\left(e_{i}\right)\right|\left|d f_{x}\left(e_{j}\right)\right|}=\frac{g_{x}\left(e_{i}, e_{j}\right)}{\left|e_{i}\right| g_{x}\left|e_{j}\right| g_{x}}=\frac{g_{i j}}{\sqrt{g_{i i}} \sqrt{g_{j j}}}=\frac{\lambda^{2} \delta_{i j}}{\sqrt{\lambda^{2}} \sqrt{\lambda^{2}}}=\delta_{i j}=\frac{\left\langle e_{i}, e_{j}\right\rangle}{\left|e_{i}\right|\left|e_{j}\right|},
$$

so f is angle-preserving.
(ii) We compute

$$
J_{f}=\left(\begin{array}{cc}
-\sqrt{1-h(y)^{2}} \sin x & \frac{h(y) h^{\prime}(y)}{\sqrt{1-h(y)^{2}}} \cos x \\
\sqrt{1-h(y)^{2}} \cos x & \frac{h(y) h^{\prime}(y)}{\sqrt{1-h(y)^{2}}} \sin x \\
0 & h^{\prime}(y)
\end{array}\right)
$$

and

$$
\left(g_{i j}\right)=J_{f}^{T} J_{f}=\left(\begin{array}{cc}
1-h(y)^{2} & 0 \\
0 & \frac{h^{\prime}(y)^{2}}{1-h(y)^{2}}
\end{array}\right) .
$$

From part (i) we know that f is angle-preserving if

$$
\begin{equation*}
1-h(y)^{2}=\frac{h^{\prime}(y)^{2}}{1-h(y)^{2}} . \tag{1}
\end{equation*}
$$

Hence we are looking for a solution of the differential equation (??), which for $h^{\prime} \geq 0$ reduces to

$$
\begin{equation*}
1-h(y)^{2}=h^{\prime}(y) \tag{2}
\end{equation*}
$$

For example using separation of variables we obtain the solution

$$
h(y)=\tanh (y) .
$$

