Prof. Dr. Joaquim Serra

Solutions 3

1. Differentiability

Let $M \subset \mathbb{R}^n$ be an *m*-dimensional submanifold, $F: M \longrightarrow \mathbb{R}^k$ a map and $p \in M$. Show that the following statements are equivalent.

- (i) F is differentiable in p (as defined in the lecture).
- (ii) There exists an open neighborhood V of p in \mathbb{R}^n and a map $\overline{F}: V \longrightarrow$ \mathbb{R}^k differentiable in p with

$$\bar{F}|_{V\cap M} = F|_{V\cap M}.$$

Solution.

 $(i) \Rightarrow (ii)$. By definition if F is differentiable at p, then there exist an open set $U \subset \mathbb{R}^m$ and a local parametrization $f: U \longrightarrow f(U) \subset M$ with f(x) = p such that $F \circ f \colon U \longrightarrow \mathbb{R}^k$ is differentiable at x. Without loss of generality we might assume that x = 0.

By the Implicit Function Theorem (injective version, A.3 on the lecture notes) applied to f, there exist open neighborhoods $V \subset \mathbb{R}^n$ of p, $W \subset$ $U \times \mathbb{R}^{n-m}$ of (0,0) and a diffeomorphism $\varphi \colon V \longrightarrow W$ such that $\varphi(p) = (0,0)$ and $(\varphi \circ f)(x) = (x, 0)$ for all (x, 0) in W.

Denote by $\pi: W \longrightarrow U$ the projection onto the first *m*-coordinates and set $U' \coloneqq \pi(W) \subset U$. Let $V' \subset V$ be an open neighborhood of p such that $f(U') = V' \cap M$. Notice that $(\varphi \circ f)(x) = (x, 0)$ for all $x \in U'$.

Then we define $\overline{F}: V' \longrightarrow \mathbb{R}^k$ by

$$\bar{F} \coloneqq (F \circ f) \circ \pi \circ \varphi|_{V'}.$$

The map \overline{F} is differentiable in p and it agrees with F on $V' \cap M$, indeed for $q = f(y) \in V' \cap M:$

$$\bar{F}(q) = F \circ f \circ \pi \circ \varphi \circ f(y) = F \circ f \circ \pi(y, 0) = F \circ f(y) = F(q).$$

Remark: We needed to introduce the sets U' and V' because there might be points $q \in V \cap M$ which are not in f(W) (this is similar to one of the proofs seen in class).

 $(ii) \Rightarrow (i)$. Let $V \subset \mathbb{R}^n$ be an open neighborhood of p and let $\overline{F} \colon V \longrightarrow \mathbb{R}^k$ be a map which is differentiable at p and such that $\overline{F}|_{V \cap M} = F|_{V \cap M}$.

Let $f: U \longrightarrow \mathbb{R}^n$ be a local parametrization of M at p with f(x) = p and $f(U) \subset V \cap M$. Then $F \circ f = \overline{F} \circ f$ is differentiable at p and so by definition F is differentiable at p.

D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

2. Orientability

- (i) Let $W \subset \mathbb{R}^n$ be an open set, $f: W \longrightarrow \mathbb{R}$ a C^1 -map and $y \in \mathbb{R}$ a regular value of f. Prove that $M \coloneqq f^{-1}(\{y\})$ is an orientable submanifold.
- (ii) Prove that the submanifolds $SL(n, \mathbb{R})$ and $SO(n, \mathbb{R})$ are orientable.

Solution. (i) By the Regular Value Theorem M is a (n-1)-submanifold of \mathbb{R}^n so in order to show that it's orientable we'll construct a Gauss map $N: M \longrightarrow S^{n-1}$ (see Lemma 2.9 in the notes).

Since y is a regular value, it holds that df_p has rank 1 for all p in M and in particular $\nabla f(p) \neq 0$. We define

$$N: M \longrightarrow S^{n-1}, \qquad p \longmapsto \frac{\nabla f(p)}{|\nabla f(p)|}.$$

As the gradient, if not zero, is always perpendicular to the level sets of f, this defines the desired Gauss map.

(ii) We showed in Exercise Sheet 2 that $SL(n, \mathbb{R}) = \det^{-1}(1)$ is the preimage of a regular value of a map $\mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$, hence orientability follows from part (i).

For SO (n, \mathbb{R}) we will produce a compatible system of local parametrizations. The proof uses merely the fact that $G := SO(n, \mathbb{R})$ is not only a (sub)manifold, but also group, with smooth group operations $(g, h) \mapsto gh$ and $g \mapsto g^{-1}$ (that is, G is a *Lie group*).

Note first that for any $g \in G$ the left multiplication

$$L_q \colon G \longrightarrow G, \quad L_q(A) = gA,$$

is a smooth map: clearly the (linear) map $A \mapsto gA$ from $\mathbb{R}^{n \times n}$ to $\mathbb{R}^{n \times n}$ is smooth, and thus the restriction to G is smooth (compare Exercise 1). Similarly, $L_{g^{-1}}$ is smooth, and $L_{g^{-1}} \circ L_g = \mathbb{1}_G$, so L_g is in fact a diffeomorphism of G.

Now pick a basis (X_1, \ldots, X_m) of the tangent space TG_e at the neutral element, and put $X_i(g) := d(L_g)_e(X_i)$ for every $g \in G$ and $i = 1, \ldots, m$ (in fact, since L_g is the restriction of a linear map, $X_i(g)$ is just gX_i , but this irrelevant). Since L_g is a diffeomorphism of G, $(X_1(g), \ldots, X_m(g))$ is a basis of TG_g for every $g \in G$. Furthermore, every X_i is a continuous (in fact, smooth) vector field on G.

For every $g \in G$ there exists a local parametrization

$$f_g \colon U_g \longrightarrow f_g(U_g) \subset G$$

D-MATH

Differential Geometry I

HS22

Prof. Dr. Joaquim Serra

such that U_g is a connected open neighborhood of $0 \in \mathbb{R}^m$, $f_g(0) = g$, and the basis $(d(f_g)_0(e_1), \ldots, d(f_g)_0(e_m))$ of TG_g is equivalent to $(X_1(g), \ldots, X_m(g))$. To show that $\{f_g\}_{g\in G}$ is a compatible system, suppose that $g, h \in G$ and $x \in U_g, y \in U_h$ are such that $f_g(x) = f_h(y) =: p$. A simple continuity argument, using a curve in U_g from 0 to x, shows that the basis $(d(f_g)_x(e_1), \ldots, d(f_g)_x(e_m))$ of TG_p is equivalent to $(X_1(p), \ldots, X_m(p))$. Likewise, $(d(f_h)_y(e_1), \ldots, d(f_h)_y(e_m))$ is equivalent to $(X_1(p), \ldots, X_m(p))$, and so

$$(d(f_g)_x(e_1), \dots, d(f_g)_x(e_m))$$
 and $(d(f_h)_y(e_1), \dots, d(f_h)_y(e_m))$

are equivalent. Put $V := f_g(U_g) \cap f_h(U_h)$ and $\psi := f_h^{-1} \circ f_g \colon f_g^{-1}(V) \longrightarrow f_h^{-1}(V)$. Since $d(f_g)_x = d(f_h)_y \circ d\psi_x$, it follows that $(d\psi_x(e_1), \ldots, d\psi_x(e_m))$ is equivalent to (e_1, \ldots, e_m) , so $\det(d\psi_x) > 0$.

D-MATH

Differential Geometry I

Prof. Dr. Joaquim Serra

3. Angle-preserving parametrization

Let $U \subset \mathbb{R}^m$ be an open set and $f: U \longrightarrow \mathbb{R}^n$ an immersion. The map f is called *angle-preserving* if for all $x \in U$ and $\xi, \eta \in TU_x$ the angles between ξ, η and $df_x(\xi), df_x(\eta)$ coincide. Here the angles are meant with respect to the standard scalar products on \mathbb{R}^m and \mathbb{R}^n , respectively.

- (i) Show that f is angle-preserving if and only if $g_{ij} = \lambda^2 \delta_{ij}$, where g_{ij} is the matrix of the first fundamental form of f, δ_{ij} is the Kronecker delta and $\lambda: U \longrightarrow \mathbb{R}$ is a differentiable function.
- (ii) Find an angle-preserving parametrization of the 2-sphere without North and South Pole, $S^2 \setminus \{N, S\} \subset \mathbb{R}^3$, of the form

$$f(x,y) = \left(\sqrt{1 - h^2(y)}\cos(x), \sqrt{1 - h^2(y)}\sin(x), h(y)\right),\$$

where $h \colon \mathbb{R} \longrightarrow \mathbb{R}$ is an odd function.

Solution.

(i) Notice first that the condition of being angle-preserving corresponds to: for all $x \in U$ and $\xi, \eta \in \mathbb{R}^m$

$$\frac{\langle df_x(\xi), df_x(\eta) \rangle_n}{|df_x(\xi)|_n |df_x(\eta)|_n} = \frac{\langle \xi, \eta \rangle_m}{|\xi|_m |\eta|_m},$$

where $\langle \cdot, \cdot \rangle_m$ and $\langle \cdot, \cdot \rangle_n$ denote the Euclidean scalar products in \mathbb{R}^m and \mathbb{R}^n , respectively (these indices will be omitted in the following).

Suppose that f is angle preserving. Then the matrix of the first fundamental form g of f in x satisfies

$$g_{ij}(x) = g_x(e_i, e_j) = \langle df_x(e_i), df_x(e_j) \rangle$$

= $|df_x(e_i)||df_x(e_j)|\langle e_i, e_j \rangle = |df_x(e_i)||df_x(e_j)|\delta_{ij}$

We now claim that $|df_x(e_i)| = |df_x(e_j)|$ for all $x \in U$ and i, j. Indeed

$$\begin{aligned} |df_x(e_i)|^2 - |df_x(e_j)|^2 &= \langle df_x(e_i), df_x(e_i) \rangle - \langle df_x(e_j), df_x(e_j) \rangle \\ &= \langle df_x(e_i) - df_x(e_j), df_x(e_i) + df_x(e_j) \rangle \\ &= \langle df_x(e_i - e_j), df_x(e_i + e_j) \rangle \\ &= \frac{|df_x(e_i - e_j)| \cdot |df_x(e_i + e_j)|}{|e_i - e_j| \cdot |e_i + e_j|} \langle e_i - e_j, e_i + e_j \rangle = 0 \end{aligned}$$

Thus $g_{ij} = \lambda^2 \delta_{ij}$ for $\lambda \colon U \longrightarrow \mathbb{R}, x \mapsto |df_x(e_1)|^2$, which is differentiable.

D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

Suppose now that $g_{ij} = \lambda^2 \delta_{ij}$, then

$$\frac{\langle df_x(e_i), df_x(e_j) \rangle}{|df_x(e_i)||df_x(e_j)|} = \frac{g_x(e_i, e_j)}{|e_i|_{g_x}|e_j|_{g_x}} = \frac{g_{ij}}{\sqrt{g_{ii}}\sqrt{g_{jj}}} = \frac{\lambda^2 \delta_{ij}}{\sqrt{\lambda^2}\sqrt{\lambda^2}} = \delta_{ij} = \frac{\langle e_i, e_j \rangle}{|e_i||e_j|},$$

so f is angle-preserving.

(ii) We compute

$$J_f = \begin{pmatrix} -\sqrt{1 - h(y)^2} \sin x & \frac{h(y)h'(y)}{\sqrt{1 - h(y)^2}} \cos x \\ \sqrt{1 - h(y)^2} \cos x & \frac{h(y)h'(y)}{\sqrt{1 - h(y)^2}} \sin x \\ 0 & h'(y) \end{pmatrix}$$

and

$$(g_{ij}) = J_f^T J_f = \begin{pmatrix} 1 - h(y)^2 & 0\\ 0 & \frac{h'(y)^2}{1 - h(y)^2} \end{pmatrix}.$$

From part (i) we know that f is angle-preserving if

$$1 - h(y)^2 = \frac{h'(y)^2}{1 - h(y)^2}.$$
(1)

Hence we are looking for a solution of the differential equation (??), which for $h' \ge 0$ reduces to

$$1 - h(y)^2 = h'(y). (2)$$

For example using separation of variables we obtain the solution

$$h(y) = \tanh(y).$$

5

HS22