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Solutions 4

1. Tubular surface

Let c : [0, L] → R3 be a smooth Frenet curve, parametrized by arc-length,
with normal vector n and binormal vector b. Show that if r > 0 is sufficiently
small, then the tubular surface f : [0, L]× R→ R3 around c defined by

f(t, ϕ) := c(t) + r
(
cosϕ · n(t) + sinϕ · b(t)

)
is regular and the area of f |[0,L]×[0,2π) equals 2πrL.

Solution. Recall that e := e1 = c
., n := e2 and b := e3 = e× n. Hence we have

the relations
e× n = b, b× e = n, n× b = e.

With this notation we also havee.n.
b
.

 =

 0 κ 0
−κ 0 τ
0 −τ 0

en
b

 .

In order to show that f is an immersion for r small enough, we begin by
computing ∂f

∂t
(t, ϕ) and ∂f

∂ϕ
(t, ϕ):

∂f

∂t
(t, ϕ) = c

.
(t) + r

(
cosϕ · n. (t) + sinϕ · b

.
(t)
)

= c
.
(t) + r

(
cosϕ

(
− κ(t) · e(t) + τ(t) · b(t)

)
− τ(t) sinϕ · n(t)

)
= c
.
(t)− rκ(t) cosϕ · e(t) + rτ(t) cosϕ · b(t)− rτ(t) sinϕ · n(t),

and
∂f

∂ϕ
(t, ϕ) = −r sinϕ · n(t) + r cosϕ · b(t).

Using the above relations, a computation shows that

∂f

∂t
(t, ϕ)× ∂f

∂ϕ
(t, ϕ) = r(rκ(t) cosϕ− 1)(sinϕ · b(t) + cosϕ · n(t)),

hence ∣∣∂f
∂t

(t, ϕ)× ∂f

∂ϕ
(t, ϕ)

∣∣ = |r(rκ(t) cosϕ− 1)|.
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This shows that if r < 1
κ(t)

, then 1−rκ(t) cosϕ > 0, so |∂f
∂t
(t, ϕ)× ∂f

∂ϕ
(t, ϕ)| 6= 0

and ∂f
∂t
(t, ϕ), ∂f

∂ϕ
(t, ϕ) are linearly independent. Therefore df7,ϕ has rank 2 and

f is an immersion.
In order to computer the area of f |[0,L]×[0,2π), we need to compute the

determinant of the matrix (gij) of the first fundamental form of f :√
det(gij(t, ϕ)) = Area(span(

∂f

∂t
(t, ϕ),

∂f

∂ϕ
(t, ϕ))) =

∣∣∂f
∂t

(t, ϕ)× ∂f

∂ϕ
(t, ϕ)

∣∣.
Thus

Area(f |[0,L]×[0,2π)) =
∫ L

0

∫ 2π

0

r(1− rκ(t) cosϕ) dϕdt

=

∫ L

0

(2πr − 0)dt

= 2πrL.

2. Torus

Let a > r > 0 and f : R2 → R3 be the parametrization of a torus T , defined
as

f(x, y) :=
(
(a+ r cosx) cos y, (a+ r cosx) sin y, r sinx

)
.

Prove that:

(a) If a geodesic is at some point tangential to the circle x = π
2
then it

must be contained in the region of T with −π
2
≤ x ≤ π

2
.

(b) Suppose that a geodesic c : R −→ T , which crosses the circle x = 0
with an angle θ ∈ (0, π

2
), also intersects the circle x = π, then

cos θ ≤ a− r
a+ r

.

Solution. (a) Suppose that the geodesic c : I → T intersects the circle x = π/2
tangentially at time t0. We write θ(t) ∈ [0, π] for the angle between c.(t) and
the horizontal circle intersecting c(t) at time t and r(t) = a+ r cos(x(t)) for
the distance between c(t) and the z-axis.

It is given that r(t0) = a and θ(t0) = 0. By Clairaut’s Theorem

r(t) cos θ(t) = r(t0) cos θ(t0) = a

for all t ∈ I and hence r(t) ≥ a for all t ∈ I. We conclude that −π/2 ≤
x(t) ≤ π/2.
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(b) Suppose that the geodesic c intersects the horizontal circle x = 0 at
time t0 with an angle θ(t0) = θ and the horizontal circle x = π at time t1
with an angle θ(t1). By Clairaut’s Theorem it holds that

a− r ≥ r(t1) cos θ(t1) = r(t0) cos θ(t0) = (a+ r) cos θ,

from which we deduce that

cos θ ≤ a− r
a+ r

.

3. Energy

Let M ⊂ Rn be a submanifold, c0 : [a, b]→M a smooth curve and

E(c0) :=
1

2

∫ b

a

|c.0(t)|2 dt

its energy.

(a) Show that L(c0)2 ≤ 2(b − a)E(c0) with an equality if and only if c0 is
parametrized proportionally to arc-length.

(b) Compute d
ds

∣∣
s=0

E(cs) for a smooth variation {cs}s∈(−ε,ε) of c0 in M .

(c) Characterize geodesics in M using the energy.

Solution. (a) From the Cauchy-Schwarz inequality it follows that

L(c0)
2 =

(∫ b

a

|c.0(t)| dt
)2

=

(∫ b

a

|c.0(t)| · 1 dt

)2

≤
∫ b

a

|c.0|2 dt ·
∫ b

a

12 dt = 2(b− a)E(c0).

Equality holds if and only if |c.0| and 1 are linearly dependent, that is, if and
only if |c.0| is constant.

(b) Denote by Vs(t) := ∂
∂s
cs(t) the variation vectorfield associated to the

variation {cs}. Then we claim that

d

ds

∣∣∣∣
s=0

E(cs) = g(c
.
0(t), V0(t))

∣∣∣b
a
−
∫ b

a

g

(
D

dt
c
.
0(t), V0(t)

)
dt
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Indeed,

d

ds

∣∣∣∣
s=0

E(cs) =
d

ds

∣∣∣∣
s=0

1

2

∫ b

a

g(c
.
s(t), c

.
s(t)) dt

=
1

2

∫ b

a

d

ds

∣∣∣∣
s=0

g(c
.
s(t), c

.
s(t)) dt

=

∫ b

a

g(c
.
0(t),

d2

ds dt

∣∣∣∣
s=0

cs(t)) dt

=

∫ b

a

g(c
.
0(t),

d

dt
V0(t)) dt

=

∫ b

a

g(c
.
0(t),

D

dt
V0(t)) dt

=

∫ b

a

d

dt
g(c
.
0(t), V0(t)) dt−

∫ b

a

g
(D
dt
c
.
0(t), V0(t)

)
dt

= g(c
.
0(t), V0(t))

∣∣∣b
a
−
∫ b

a

g
(D
dt
c
.
0(t), V0(t)

)
dt.

(c) We claim that c0 : [a, b]→M is a geodesic if and only if d
ds

∣∣
s=0

E(cs) =
0 for all proper variations {cs}s∈(−ε,ε) of c0 in M .

First notice that V0(a) = V0(b) = 0 for the variation vectorfield Vs of a
proper variation, hence from (b):

d

ds

∣∣∣∣
s=0

E(cs) = −
∫ b

a

g

(
D

dt
c
.
0(t), V0(t)

)
dt.

If c0 is a geodesic, then D
dt
c
.
0(t) = 0 and hence

d

ds

∣∣∣
s=0

E(cs) = 0.

On the other hand if c0 is not a geodesic, there exists t0 ∈ (a, b) with
D
dt
c
.
0(t0) 6= 0. Let f : U → M be a local parametrization of M with f(0) =

c(t0). Set ξ := (df0)
−1 (D

dt
c
.
0(t0)

)
. Take r > 0 small enough such that [t0 −

r, t0 + r] ⊂ [a, b], c(t) ⊂ f(U) for all t ∈ [t0 − r, t0 + r] and〈
D

dt
c
.
0(t), dfγ0(t)(ξ)

〉
≥ δ > 0,

for all t ∈ [t0− r, t0+ r], where γ0 := f−1 ◦ c0. (This is possible since dfγ0(t) =
dff−1(c0(t)) = df0).
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Take h : [a, b]→ [0, 1] a smooth function with

h(t) =

{
1, |t− t0| ≤ r

2
,

0, |t− t0| ≥ r.

Now we’ll define a proper variation of c = c0. Let cs : [a, b]→M

cs(t) :=

{
c0(t), |t− t0| ≥ r,

f (γ0(t)− sh(t) · ξ) , |t− t0| ≤ r.

Then

V0(t) =
d

ds

∣∣∣∣
s=0

cs(t) =

{
0, |t− t0| ≥ r,

dfγ0(t)(−h(t) · ξ), |t− t0| ≤ r,

hence

d

ds

∣∣∣∣
s=0

E(cs) = −
∫ b

a

g

(
D

dt
c
.
0(t), V0(t)

)
dt

=

∫ t0+r

t0−r
h(t) ·

〈
D

dt
c
.
0(t), dfγ0(t)(−h(t) · ξ)

〉
dt

=

∫ t0+r

t0−r
h(t) ·

〈
D

dt
c
.
0(t), dfγ0(t)(ξ)

〉
dt

≥
∫ t0+

r
2

t0− r
2

δ dt

= rδ > 0.

Therefore we have found a proper variation of c with d
ds

∣∣
s=0

E(cs) 6= 0.
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