Prof. Dr. Joaquim Serra

Solutions 4

1. Tubular surface

Let $c:[0, L] \rightarrow \mathbb{R}^{3}$ be a smooth Frenet curve, parametrized by arc-length, with normal vector n and binormal vector b. Show that if $r>0$ is sufficiently small, then the tubular surface $f:[0, L] \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ around c defined by

$$
f(t, \varphi):=c(t)+r(\cos \varphi \cdot n(t)+\sin \varphi \cdot b(t))
$$

is regular and the area of $\left.f\right|_{[0, L] \times[0,2 \pi)}$ equals $2 \pi r L$.
Solution. Recall that $e:=e_{1}=\dot{c}, n:=e_{2}$ and $b:=e_{3}=e \times n$. Hence we have the relations

$$
e \times n=b, \quad b \times e=n, \quad n \times b=e .
$$

With this notation we also have

$$
\left(\begin{array}{c}
\dot{e} \\
\dot{n} \\
\dot{b}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
e \\
n \\
b
\end{array}\right) .
$$

In order to show that f is an immersion for r small enough, we begin by computing $\frac{\partial f}{\partial t}(t, \varphi)$ and $\frac{\partial f}{\partial \varphi}(t, \varphi)$:

$$
\begin{aligned}
\frac{\partial f}{\partial t}(t, \varphi) & =\dot{c}(t)+r(\cos \varphi \cdot \dot{n}(t)+\sin \varphi \cdot \dot{b}(t)) \\
& =\dot{c}(t)+r(\cos \varphi(-\kappa(t) \cdot e(t)+\tau(t) \cdot b(t))-\tau(t) \sin \varphi \cdot n(t)) \\
& =\dot{c}(t)-r \kappa(t) \cos \varphi \cdot e(t)+r \tau(t) \cos \varphi \cdot b(t)-r \tau(t) \sin \varphi \cdot n(t),
\end{aligned}
$$

and

$$
\frac{\partial f}{\partial \varphi}(t, \varphi)=-r \sin \varphi \cdot n(t)+r \cos \varphi \cdot b(t)
$$

Using the above relations, a computation shows that

$$
\frac{\partial f}{\partial t}(t, \varphi) \times \frac{\partial f}{\partial \varphi}(t, \varphi)=r(r \kappa(t) \cos \varphi-1)(\sin \varphi \cdot b(t)+\cos \varphi \cdot n(t)),
$$

hence

$$
\left|\frac{\partial f}{\partial t}(t, \varphi) \times \frac{\partial f}{\partial \varphi}(t, \varphi)\right|=|r(r \kappa(t) \cos \varphi-1)| .
$$

Prof. Dr. Joaquim Serra
This shows that if $r<\frac{1}{\kappa(t)}$, then $1-r \kappa(t) \cos \varphi>0$, so $\left|\frac{\partial f}{\partial t}(t, \varphi) \times \frac{\partial f}{\partial \varphi}(t, \varphi)\right| \neq 0$ and $\frac{\partial f}{\partial t}(t, \varphi), \frac{\partial f}{\partial \varphi}(t, \varphi)$ are linearly independent. Therefore $d f_{7, \varphi}$ has rank 2 and f is an immersion.

In order to computer the area of $\left.f\right|_{[0, L] \times[0,2 \pi)}$, we need to compute the determinant of the matrix $\left(g_{i j}\right)$ of the first fundamental form of f :

$$
\sqrt{\operatorname{det}\left(g_{i j}(t, \varphi)\right)}=\operatorname{Area}\left(\operatorname{span}\left(\frac{\partial f}{\partial t}(t, \varphi), \frac{\partial f}{\partial \varphi}(t, \varphi)\right)\right)=\left|\frac{\partial f}{\partial t}(t, \varphi) \times \frac{\partial f}{\partial \varphi}(t, \varphi)\right| .
$$

Thus

$$
\begin{aligned}
\operatorname{Area}\left(\left.f\right|_{[0, L] \times[0,2 \pi)}\right) & =\int_{0}^{L} \int_{0}^{2 \pi} r(1-r \kappa(t) \cos \varphi) \mathrm{d} \varphi d t \\
& =\int_{0}^{L}(2 \pi r-0) d t \\
& =2 \pi r L
\end{aligned}
$$

2. Torus

Let $a>r>0$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the parametrization of a torus T, defined as

$$
f(x, y):=((a+r \cos x) \cos y,(a+r \cos x) \sin y, r \sin x) .
$$

Prove that:
(a) If a geodesic is at some point tangential to the circle $x=\frac{\pi}{2}$ then it must be contained in the region of T with $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(b) Suppose that a geodesic $c: \mathbb{R} \longrightarrow T$, which crosses the circle $x=0$ with an angle $\theta \in\left(0, \frac{\pi}{2}\right)$, also intersects the circle $x=\pi$, then

$$
\cos \theta \leq \frac{a-r}{a+r} .
$$

Solution. (a) Suppose that the geodesic $c: I \rightarrow T$ intersects the circle $x=\pi / 2$ tangentially at time t_{0}. We write $\theta(t) \in[0, \pi]$ for the angle between $\dot{c}(t)$ and the horizontal circle intersecting $c(t)$ at time t and $r(t)=a+r \cos (x(t))$ for the distance between $c(t)$ and the z-axis.

It is given that $r\left(t_{0}\right)=a$ and $\theta\left(t_{0}\right)=0$. By Clairaut's Theorem

$$
r(t) \cos \theta(t)=r\left(t_{0}\right) \cos \theta\left(t_{0}\right)=a
$$

for all $t \in I$ and hence $r(t) \geq a$ for all $t \in I$. We conclude that $-\pi / 2 \leq$ $x(t) \leq \pi / 2$.

Prof. Dr. Joaquim Serra
(b) Suppose that the geodesic c intersects the horizontal circle $x=0$ at time t_{0} with an angle $\theta\left(t_{0}\right)=\theta$ and the horizontal circle $x=\pi$ at time t_{1} with an angle $\theta\left(t_{1}\right)$. By Clairaut's Theorem it holds that

$$
a-r \geq r\left(t_{1}\right) \cos \theta\left(t_{1}\right)=r\left(t_{0}\right) \cos \theta\left(t_{0}\right)=(a+r) \cos \theta,
$$

from which we deduce that

$$
\cos \theta \leq \frac{a-r}{a+r}
$$

3. Energy

Let $M \subset \mathbb{R}^{n}$ be a submanifold, $c_{0}:[a, b] \rightarrow M$ a smooth curve and

$$
E\left(c_{0}\right):=\frac{1}{2} \int_{a}^{b}\left|\dot{c}_{0}(t)\right|^{2} \mathrm{~d} t
$$

its energy.
(a) Show that $L\left(c_{0}\right)^{2} \leq 2(b-a) E\left(c_{0}\right)$ with an equality if and only if c_{0} is parametrized proportionally to arc-length.
(b) Compute $\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)$ for a smooth variation $\left\{c_{s}\right\}_{s \in(-\varepsilon, \varepsilon)}$ of c_{0} in M.
(c) Characterize geodesics in M using the energy.

Solution. (a) From the Cauchy-Schwarz inequality it follows that

$$
\begin{aligned}
L\left(c_{0}\right)^{2} & =\left(\int_{a}^{b}\left|\dot{c}_{0}(t)\right| \mathrm{d} t\right)^{2}=\left(\int_{a}^{b}\left|\dot{c}_{0}(t)\right| \cdot 1 \mathrm{~d} t\right)^{2} \\
& \leq \int_{a}^{b}\left|\dot{c}_{0}\right|^{2} \mathrm{~d} t \cdot \int_{a}^{b} 1^{2} \mathrm{~d} t=2(b-a) E\left(c_{0}\right)
\end{aligned}
$$

Equality holds if and only if $\left|\dot{c}_{0}\right|$ and 1 are linearly dependent, that is, if and only if $\left|\dot{c}_{0}\right|$ is constant.
(b) Denote by $V_{s}(t):=\frac{\partial}{\partial s} c_{s}(t)$ the variation vectorfield associated to the variation $\left\{c_{s}\right\}$. Then we claim that

$$
\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)=\left.g\left(\dot{c}_{0}(t), V_{0}(t)\right)\right|_{a} ^{b}-\int_{a}^{b} g\left(\frac{D}{d t} \dot{c}_{0}(t), V_{0}(t)\right) \mathrm{d} t
$$

Indeed,

$$
\begin{aligned}
\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right) & =\left.\frac{d}{d s}\right|_{s=0} \frac{1}{2} \int_{a}^{b} g\left(\dot{c}_{s}(t), \dot{c}_{s}(t)\right) \mathrm{d} t \\
& =\left.\frac{1}{2} \int_{a}^{b} \frac{d}{d s}\right|_{s=0} g\left(\dot{c}_{s}(t), \dot{c}_{s}(t)\right) \mathrm{d} t \\
& =\int_{a}^{b} g\left(\dot{c}_{0}(t),\left.\frac{d^{2}}{d s d t}\right|_{s=0} c_{s}(t)\right) \mathrm{d} t \\
& =\int_{a}^{b} g\left(\dot{c}_{0}(t), \frac{d}{d t} V_{0}(t)\right) \mathrm{d} t \\
& =\int_{a}^{b} g\left(\dot{c}_{0}(t), \frac{D}{d t} V_{0}(t)\right) \mathrm{d} t \\
& =\int_{a}^{b} \frac{d}{d t} g\left(\dot{c}_{0}(t), V_{0}(t)\right) \mathrm{d} t-\int_{a}^{b} g\left(\frac{D}{d t} \dot{c}_{0}(t), V_{0}(t)\right) \mathrm{d} t \\
& =\left.g\left(\dot{c}_{0}(t), V_{0}(t)\right)\right|_{a} ^{b}-\int_{a}^{b} g\left(\frac{D}{d t} \dot{c}_{0}(t), V_{0}(t)\right) \mathrm{d} t .
\end{aligned}
$$

(c) We claim that $c_{0}:[a, b] \rightarrow M$ is a geodesic if and only if $\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)=$ 0 for all proper variations $\left\{c_{s}\right\}_{s \in(-\varepsilon, \varepsilon)}$ of c_{0} in M.

First notice that $V_{0}(a)=V_{0}(b)=0$ for the variation vectorfield V_{s} of a proper variation, hence from (b):

$$
\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)=-\int_{a}^{b} g\left(\frac{D}{d t} \dot{c}_{0}(t), V_{0}(t)\right) d t
$$

If c_{0} is a geodesic, then $\frac{D}{d t} \dot{c}_{0}(t)=0$ and hence

$$
\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right)=0
$$

On the other hand if c_{0} is not a geodesic, there exists $t_{0} \in(a, b)$ with $\frac{D}{d t} \dot{c}_{0}\left(t_{0}\right) \neq 0$. Let $f: U \rightarrow M$ be a local parametrization of M with $f(0)=$ $c\left(t_{0}\right)$. Set $\xi:=\left(d f_{0}\right)^{-1}\left(\frac{D}{d t} \dot{c}_{0}\left(t_{0}\right)\right)$. Take $r>0$ small enough such that $\left[t_{0}-\right.$ $\left.r, t_{0}+r\right] \subset[a, b], c(t) \subset f(U)$ for all $t \in\left[t_{0}-r, t_{0}+r\right]$ and

$$
\left\langle\frac{D}{d t} \dot{c}_{0}(t), d f_{\gamma_{0}(t)}(\xi)\right\rangle \geq \delta>0
$$

for all $t \in\left[t_{0}-r, t_{0}+r\right]$, where $\gamma_{0}:=f^{-1} \circ c_{0}$. (This is possible since $d f_{\gamma_{0}(t)}=$ $\left.d f_{f-1\left(c_{0}(t)\right)}=d f_{0}\right)$.

Prof. Dr. Joaquim Serra
Take $h:[a, b] \rightarrow[0,1]$ a smooth function with

$$
h(t)= \begin{cases}1, & \left|t-t_{0}\right| \leq \frac{r}{2} \\ 0, & \left|t-t_{0}\right| \geq r\end{cases}
$$

Now we'll define a proper variation of $c=c_{0}$. Let $c_{s}:[a, b] \rightarrow M$

$$
c_{s}(t):= \begin{cases}c_{0}(t), & \left|t-t_{0}\right| \geq r \\ f\left(\gamma_{0}(t)-s h(t) \cdot \xi\right), & \left|t-t_{0}\right| \leq r\end{cases}
$$

Then

$$
V_{0}(t)=\left.\frac{d}{d s}\right|_{s=0} c_{s}(t)= \begin{cases}0, & \left|t-t_{0}\right| \geq r \\ d f_{\gamma_{0}(t)}(-h(t) \cdot \xi), & \left|t-t_{0}\right| \leq r\end{cases}
$$

hence

$$
\begin{aligned}
\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right) & =-\int_{a}^{b} g\left(\frac{D}{d t} \dot{c}_{0}(t), V_{0}(t)\right) \mathrm{d} t \\
& =\int_{t_{0}-r}^{t_{0}+r} h(t) \cdot\left\langle\frac{D}{d t} \dot{c}_{0}(t), d f_{\gamma_{0}(t)}(-h(t) \cdot \xi)\right\rangle \mathrm{d} t \\
& =\int_{t_{0}-r}^{t_{0}+r} h(t) \cdot\left\langle\frac{D}{d t} \dot{c}_{0}(t), d f_{\gamma_{0}(t)}(\xi)\right\rangle \mathrm{d} t \\
& \geq \int_{t_{0}-\frac{r}{2}}^{t_{0}+\frac{r}{2}} \delta \mathrm{~d} t \\
& =r \delta>0 .
\end{aligned}
$$

Therefore we have found a proper variation of c with $\left.\frac{d}{d s}\right|_{s=0} E\left(c_{s}\right) \neq 0$.

