Prof. Dr. Joaquim Serra

Solutions 5

1. Elliptic Points

A point $p \in M \subset \mathbb{R}^{m+1}$ on a hypersurface is called elliptic if the second fundamental form is (positive or negative) definite. Show that if M is compact then it has elliptic points.

Solution. Since M is compact, it is closed and bounded. Hence there exists a point $z \in \mathbb{R}^{m+1}$ and a radius $R>0$ such that M is contained in $\bar{B}_{R}(z)$ and the boundary $S:=S_{R}^{m}(z)=\partial \bar{B}_{R}(z)$ touches M in (at least) one point $p \in M$.

As S touches M in p, it holds that $T S_{p}=T M_{p}$. In a neighborhood of p one can write M as a graph over $T M_{p}$: let f be such a local parametrization, so

$$
f\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{m}, b\left(x^{1}, \ldots, x^{m}\right)\right)
$$

with $b(0, \ldots, 0)=0$ and $\nabla b(0, \ldots, 0)=0$.
As seen in class the matrix of the second fundamental form of f is given by

$$
\left(h_{i j}\right)=\frac{1}{\sqrt{1+|\nabla b|^{2}}} \operatorname{Hess}(b),
$$

where $\operatorname{Hess}(b):=\left(b_{i j}\right)$ is the Hessian matrix of b. In particular it holds that $\left(h_{i j}(0)\right)=\operatorname{Hess}_{0}(b)=\left(b_{i j}(0)\right)$.

The sphere S can also be locally parametrized around p by

$$
g\left(x^{1}, \ldots, x^{m}\right):=\left(x^{1}, \ldots, x^{m}, s\left(x^{1}, \ldots, x^{m}\right)\right)
$$

with $s(x)=R-\sqrt{R^{2}-|x|^{2}}$. Notice that $s(0)=0, \nabla s=0$ and $\operatorname{Hess}_{0}(s)=$ $\left(s_{i j}(0)\right)=\frac{1}{R} \mathbb{1}$.

Moreover, the distance between $T M_{p}$ and S is smaller than the distance between $T M_{p}$ and M, we have that $b(x) \geq s(x)$. Therefore a Taylor-expansion around 0 show that

$$
b(x)=\frac{1}{2} x^{T} \operatorname{Hess}_{0}(b) x+\mathcal{O}\left(|x|^{3}\right) \geq s(x)=\frac{1}{2} x^{T} \operatorname{Hess}_{0}(s) x+\mathcal{O}\left(|x|^{3}\right),
$$

from which we deduce that $x^{\mathrm{T}} \operatorname{Hess}_{0}(b) x \geq x^{\mathrm{T}} \operatorname{Hess}_{0}(s) x=\frac{1}{R}|x|^{2}$, which shows that $\operatorname{Hess}_{0}(b)$ is positive definite and p is an elliptic point.

Prof. Dr. Joaquim Serra

2. Mean Curvature

Let $M \subset \mathbb{R}^{3}$ be a surface and $p \in M$ a point. Fix $v_{0} \neq 0 \in T M_{p}$. Let $H(p)$ be the mean curvature in p and denote by $\kappa_{p}(\theta):=h_{p}(v, v)$ the normal curvature in direction v, where $v \in T M_{p},|v|=1$, forms an angle θ with v_{0}.

Prove that

$$
H(p)=\frac{1}{\pi} \int_{0}^{\pi} \kappa_{p}(\theta) \mathrm{d} \theta
$$

Solution. Let $\left(e_{1}, e_{2}\right)$ be an orthonormal basis of $T M_{p}$ consisting of principal curvature directions, i.e. $L_{p} e_{i}=\kappa_{i} e_{i}$, for $i=1,2$.

If $v_{0}=\lambda\left(\cos \theta_{0} \cdot e_{1}+\sin \theta_{0} \cdot e_{2}\right)$, for some $\lambda>0$, then the vector v at an angle θ with v_{0} is given by

$$
v(\theta)=\cos \left(\theta_{0}+\theta\right) \cdot e_{1}+\sin \left(\theta_{0}+\theta\right) \cdot e_{2}
$$

Then we can compute the normal curvature as follows,

$$
\begin{aligned}
k_{p}(\theta) & =h_{p}(v(\theta), v(\theta))=g_{p}\left(v(\theta), L_{p}(v(\theta))\right) \\
& =\left\langle\cos \left(\theta_{0}+\theta\right) \cdot e_{1}+\sin \left(\theta_{0}+\theta\right) \cdot e_{2}, \kappa_{1} \cos \left(\theta_{0}+\theta\right) \cdot e_{1}+\kappa_{2} \sin \left(\theta_{0}+\theta\right) \cdot e_{2}\right\rangle \\
& =\kappa_{1} \cos ^{2}\left(\theta_{0}+\theta\right)+\kappa_{2} \sin ^{2}\left(\theta_{0}+\theta\right)
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
\int_{0}^{\pi} k_{p}(\theta) d \theta & =\kappa_{1} \cdot \int_{0}^{\pi} \cos ^{2}\left(\theta_{0}+\theta\right) d \theta+\kappa_{2} \cdot \int_{0}^{\pi} \sin ^{2}\left(\theta_{0}+\theta\right) d \theta \\
& =\kappa_{1} \cdot \frac{\pi}{2}+\kappa_{2} \cdot \frac{\pi}{2}=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \cdot \pi=H(p) \cdot \pi
\end{aligned}
$$

so $H(p)=\frac{1}{\pi} \int_{0}^{\pi} k_{p}(\theta) d \theta$.

3. Local Isometries

Let $f, \tilde{f}: \mathbb{R}_{\geq 0} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ be two immersions, given by

$$
\begin{aligned}
& f(x, y):=(x \sin y, x \cos y, \log x) \\
& \tilde{f}(x, y):=(x \sin y, x \cos y, y) .
\end{aligned}
$$

a) Show that f and \tilde{f} have the same Gauss curvature (as functions of (x, y)).
b) Are f and \tilde{f} (locally) isometric?

Hint: Consider the level sets of the Gauss curvature and the curves orthogonal to these.

Prof. Dr. Joaquim Serra
Solution. a) We begin by computing the partial derivatives of f and the Gauss map:

$$
\begin{aligned}
f_{x}(x, y) & =\left(\sin y, \cos y, \frac{1}{x}\right), \quad f_{y}(x, y)=(x \cos y,-x \sin y, 0), \\
f_{x x}(x, y) & =\left(0,0,-\frac{1}{x^{2}}\right), \quad f_{y y}(x, y)=(-x \sin y,-x \cos y, 0), \\
f_{x y}(x, y) & =f_{y x}(x, y)=(\cos y,-\sin y, 0), \\
\nu & =\frac{f_{x} \times f_{y}}{\left|f_{x} \times f_{y}\right|}=\frac{1}{\sqrt{1+x^{2}}}(\sin y, \cos y,-x) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(g_{i j}\right)=\left(\left\langle f_{i}, f_{j}\right\rangle\right)=\left(\begin{array}{cc}
1+\frac{1}{x^{2}} & 0 \\
0 & x^{2}
\end{array}\right), \\
& \left(h_{i j}\right)=\left(\left\langle f_{i j}, \nu\right\rangle\right)=\frac{1}{\sqrt{1+x^{2}}}\left(\begin{array}{cc}
\frac{1}{x} & 0 \\
0 & -x
\end{array}\right)
\end{aligned}
$$

and therefore

$$
K(x, y)=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}=\frac{-\frac{1}{1+x^{2}}}{1+x^{2}}=-\frac{1}{\left(1+x^{2}\right)^{2}} .
$$

Analogously for \tilde{f} we have

$$
\begin{array}{rlrl}
\tilde{f}_{x}(x, y) & =(\sin y, \cos y, 0), & \tilde{f}_{y}(x, y)=(x \cos y,-x \sin y, 1), \\
\tilde{f}_{x x}(x, y) & =(0,0,0), & \tilde{f}_{y y}(x, y)=(-x \sin y,-x \cos y, 0), \\
\tilde{f}_{x y}(x, y) & =\tilde{f}_{y x}(x, y)=(\cos y,-\sin y, 0), \\
\tilde{\nu} & =\frac{\tilde{f}_{x} \times \tilde{f}_{y}}{\left|\tilde{f}_{x} \times \tilde{f}_{y}\right|}=\frac{1}{\sqrt{1+x^{2}}}(\cos y,-\sin y,-x),
\end{array}
$$

and

$$
\begin{aligned}
& \left(\tilde{g}_{i j}\right)=\left(\left\langle\tilde{f}_{i}, \tilde{f}_{j}\right\rangle\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1+x^{2}
\end{array}\right), \\
& \left(\tilde{h}_{i j}\right)=\left(\left\langle\tilde{f}_{i j}, \tilde{\nu}\right\rangle\right)=\frac{1}{\sqrt{1+x^{2}}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

from which

$$
\tilde{K}(x, y)=\frac{\operatorname{det}\left(\tilde{h}_{i j}\right)}{\operatorname{det}\left(\tilde{g}_{i j}\right)}=\frac{-\frac{1}{1+x^{2}}}{1+x^{2}}=-\frac{1}{\left(1+x^{2}\right)^{2}},
$$

so $K(x, y)=\tilde{K}(x, y)$.
b) We claim that f and \tilde{f} are not locally isometric. Suppose that they are locally isometric, then for every point $\left(x_{0}, y_{0}\right) \in \mathbb{R}_{\geq 0} \times \mathbb{R}$ there exists an open neighborhood and an isometry $\varphi:(U, g) \rightarrow(\varphi(U), \tilde{g})$. We write $\varphi(x, y)=(\tilde{x}(x, y), \tilde{y}(x, y))$. As the Gauss curvature is intrinsic we have $K(x, y)=K(\varphi(x, y))=K(\tilde{x}, \tilde{y})$, that is,

$$
-\frac{1}{\left(1+x^{2}\right)^{2}}=-\frac{1}{\left(1+\tilde{x}^{2}\right)^{2}}
$$

and hence $\tilde{x}(x, y)=x$, which implies that $\varphi(x, y)=(x, \tilde{y}(x, y))$.
Notice that the Gauss curvature is constant on curves with constant x coordinate. Now consider a curve $\gamma(t)=\left(u(t), y_{0}\right)$ with $u(0)=x_{0}$, parametrized by arc length. The curve γ runs perpendicularly to curves with constant Gauss curvature. Its image $\tilde{\gamma}:=\varphi \circ \gamma$ must also be parametrized by arc length and run perpendicularly to curves with constant Gauss curvature. Hence $\tilde{\gamma}(t)=\left(u(t), \tilde{y_{0}}\right)$ and $|\dot{\tilde{\gamma}}(t)|_{\tilde{g}}=|\dot{u}(t)|=1$, so $u(t)=x_{0} \pm t$. Therefore we obtain

$$
|\dot{\gamma}(t)|_{g}=\sqrt{1+\frac{1}{u^{2}(t)}} \neq 1,
$$

a contradiction to the fact that γ is parametrized by arc length.
Alternative solution:
Now notice that since φ is an isometry it holds that the matrix of the first fundamental form of \tilde{f} in $\varphi(x, y)=(x, \tilde{y})$ with respect to the basis $\left(\tilde{e}_{1}, \tilde{e}_{2}\right):=\left(d \varphi_{(x, y)\left(e_{1}\right)}, d \varphi_{(x, y)\left(e_{2}\right)}\right)$ of $T \tilde{U}_{x, \tilde{y}}$ coincides with $\left(g_{i j}(x, y)\right)$ and is therefore given by

$$
\left(\tilde{g}_{i j}(x, \tilde{y})\right)_{\left(\tilde{e}_{1}, \tilde{e}_{2}\right)}=\left(\begin{array}{cc}
1+\frac{1}{x^{2}} & 0 \\
0 & x^{2}
\end{array}\right)
$$

On the other hand the matrix of the first fundamental form of \tilde{f} with respect to the standard basis is given by $\left(\tilde{g}_{i j}(x, \tilde{y})\right)_{\left(e_{1}, e_{2}\right)}=\left(\tilde{g}_{i j}(x, \tilde{y})\right)$ and was computed in a).

The matrix of change of basis from $\left(e_{1}, e_{2}\right)$ to $\left(\tilde{e}_{1}, \tilde{e}_{2}\right)$ is given exactly by

$$
C:=d \varphi_{(x, y)}=\left(\begin{array}{ll}
1 & 0 \\
a & b
\end{array}\right)
$$

for some a, b. Thus it must hold that

$$
\left(\tilde{g}_{i j}(x, \tilde{y})\right)_{\left(\tilde{e}_{1}, \tilde{e}_{2}\right)}=M \cdot\left(\tilde{g}_{i j}(x, \tilde{y})\right)_{\left(e_{1}, e_{2}\right)} \cdot M^{-1}
$$

Since the first row of M is $\left(\begin{array}{ll}1 & 0\end{array}\right)$ (as a consequence of the fact that φ fixes the first coordinate) one sees that the first entry of the matrix must remain unchanged, but this is not true. Contradiction.

