Solutions 5

1. Elliptic Points

A point $p \in M \subset \mathbb{R}^{m+1}$ on a hypersurface is called *elliptic* if the second fundamental form is (positive or negative) definite. Show that if M is compact then it has elliptic points.

Solution. Since M is compact, it is closed and bounded. Hence there exists a point $z \in \mathbb{R}^{m+1}$ and a radius R > 0 such that M is contained in $\overline{B}_R(z)$ and the boundary $S := S_R^m(z) = \partial \bar{B}_R(z)$ touches M in (at least) one point $p \in M$.

As S touches M in p, it holds that $TS_p = TM_p$. In a neighborhood of p one can write M as a graph over TM_p : let f be such a local parametrization, \mathbf{SO}

$$f(x^1, \dots, x^m) = (x^1, \dots, x^m, b(x^1, \dots, x^m))$$

with b(0, ..., 0) = 0 and $\nabla b(0, ..., 0) = 0$.

As seen in class the matrix of the second fundamental form of f is given by

$$(h_{ij}) = \frac{1}{\sqrt{1 + |\nabla b|^2}} \operatorname{Hess}(b),$$

where $\text{Hess}(b) := (b_{ij})$ is the Hessian matrix of b. In particular it holds that $(h_{ij}(0)) = \text{Hess}_0(b) = (b_{ij}(0)).$

The sphere S can also be locally parametrized around p by

$$g(x^1,\ldots,x^m) \coloneqq (x^1,\ldots,x^m,s(x^1,\ldots,x^m))$$

with $s(x) = R - \sqrt{R^2 - |x|^2}$. Notice that s(0) = 0, $\nabla s = 0$ and $\text{Hess}_0(s) =$ $(s_{ij}(0)) = \frac{1}{R}\mathbb{1}.$

Moreover, the distance between TM_p and S is smaller than the distance between TM_p and M, we have that $b(x) \geq s(x)$. Therefore a Taylor-expansion around 0 show that

$$b(x) = \frac{1}{2}x^T \operatorname{Hess}_0(b)x + \mathcal{O}\left(|x|^3\right) \ge s(x) = \frac{1}{2}x^T \operatorname{Hess}_0(s)x + \mathcal{O}\left(|x|^3\right),$$

from which we deduce that $x^{\mathrm{T}} \mathrm{Hess}_{0}(b) x \geq x^{\mathrm{T}} \mathrm{Hess}_{0}(s) x = \frac{1}{R} |x|^{2}$, which shows that $\text{Hess}_0(b)$ is positive definite and p is an elliptic point.

D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

2. Mean Curvature

Let $M \subset \mathbb{R}^3$ be a surface and $p \in M$ a point. Fix $v_0 \neq 0 \in TM_p$. Let H(p) be the mean curvature in p and denote by $\kappa_p(\theta) \coloneqq h_p(v, v)$ the normal curvature in direction v, where $v \in TM_p$, |v| = 1, forms an angle θ with v_0 .

Prove that

$$H(p) = \frac{1}{\pi} \int_0^{\pi} \kappa_p(\theta) \,\mathrm{d}\theta.$$

Solution. Let (e_1, e_2) be an orthonormal basis of TM_p consisting of principal curvature directions, i.e. $L_p e_i = \kappa_i e_i$, for i = 1, 2.

If $v_0 = \lambda(\cos \theta_0 \cdot e_1 + \sin \theta_0 \cdot e_2)$, for some $\lambda > 0$, then the vector v at an angle θ with v_0 is given by

$$v(\theta) = \cos(\theta_0 + \theta) \cdot e_1 + \sin(\theta_0 + \theta) \cdot e_2.$$

Then we can compute the normal curvature as follows,

$$k_p(\theta) = h_p(v(\theta), v(\theta)) = g_p(v(\theta), L_p(v(\theta)))$$

= $\langle \cos(\theta_0 + \theta) \cdot e_1 + \sin(\theta_0 + \theta) \cdot e_2, \kappa_1 \cos(\theta_0 + \theta) \cdot e_1 + \kappa_2 \sin(\theta_0 + \theta) \cdot e_2 \rangle$
= $\kappa_1 \cos^2(\theta_0 + \theta) + \kappa_2 \sin^2(\theta_0 + \theta)$

from which we obtain

$$\int_0^{\pi} k_p(\theta) \, d\theta = \kappa_1 \cdot \int_0^{\pi} \cos^2(\theta_0 + \theta) \, d\theta + \kappa_2 \cdot \int_0^{\pi} \sin^2(\theta_0 + \theta) \, d\theta$$
$$= \kappa_1 \cdot \frac{\pi}{2} + \kappa_2 \cdot \frac{\pi}{2} = \frac{1}{2} \left(\kappa_1 + \kappa_2\right) \cdot \pi = H(p) \cdot \pi,$$

so $H(p) = \frac{1}{\pi} \int_0^{\pi} k_p(\theta) d\theta$.

3. Local Isometries

Let $f, \tilde{f} \colon \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}^3$ be two immersions, given by

$$f(x, y) \coloneqq (x \sin y, x \cos y, \log x),$$

$$\tilde{f}(x, y) \coloneqq (x \sin y, x \cos y, y).$$

- a) Show that f and \tilde{f} have the same Gauss curvature (as functions of (x, y)).
- b) Are f and \tilde{f} (locally) isometric?

Hint: Consider the level sets of the Gauss curvature and the curves orthogonal to these.

D-MATH

Differential Geometry I

Prof. Dr. Joaquim Serra

Solution. a) We begin by computing the partial derivatives of f and the Gauss map:

$$f_x(x,y) = (\sin y, \cos y, \frac{1}{x}), \quad f_y(x,y) = (x \cos y, -x \sin y, 0),$$

$$f_{xx}(x,y) = (0, 0, -\frac{1}{x^2}), \quad f_{yy}(x,y) = (-x \sin y, -x \cos y, 0),$$

$$f_{xy}(x,y) = f_{yx}(x,y) = (\cos y, -\sin y, 0),$$

$$\nu = \frac{f_x \times f_y}{|f_x \times f_y|} = \frac{1}{\sqrt{1+x^2}} (\sin y, \cos y, -x).$$

Thus

$$(g_{ij}) = (\langle f_i, f_j \rangle) = \begin{pmatrix} 1 + \frac{1}{x^2} & 0\\ 0 & x^2 \end{pmatrix},$$
$$(h_{ij}) = (\langle f_{ij}, \nu \rangle) = \frac{1}{\sqrt{1+x^2}} \begin{pmatrix} \frac{1}{x} & 0\\ 0 & -x \end{pmatrix}$$

and therefore

$$K(x,y) = \frac{\det(h_{ij})}{\det(g_{ij})} = \frac{-\frac{1}{1+x^2}}{1+x^2} = -\frac{1}{(1+x^2)^2}.$$

Analogously for \tilde{f} we have

$$\begin{split} \tilde{f}_x(x,y) &= (\sin y, \cos y, 0), \quad \tilde{f}_y(x,y) = (x \cos y, -x \sin y, 1), \\ \tilde{f}_{xx}(x,y) &= (0,0,0), \qquad \tilde{f}_{yy}(x,y) = (-x \sin y, -x \cos y, 0), \\ \tilde{f}_{xy}(x,y) &= \tilde{f}_{yx}(x,y) = (\cos y, -\sin y, 0), \\ \tilde{\nu} &= \frac{\tilde{f}_x \times \tilde{f}_y}{|\tilde{f}_x \times \tilde{f}_y|} = \frac{1}{\sqrt{1+x^2}} (\cos y, -\sin y, -x), \end{split}$$

and

$$\begin{pmatrix} \tilde{g}_{ij} \end{pmatrix} = \left(\langle \tilde{f}_i, \tilde{f}_j \rangle \right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 + x^2 \end{pmatrix},$$
$$\left(\tilde{h}_{ij} \right) = \left(\langle \tilde{f}_{ij}, \tilde{\nu} \rangle \right) = \frac{1}{\sqrt{1 + x^2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

from which

$$\tilde{K}(x,y) = \frac{\det(\tilde{h}_{ij})}{\det(\tilde{g}_{ij})} = \frac{-\frac{1}{1+x^2}}{1+x^2} = -\frac{1}{(1+x^2)^2},$$

so $K(x, y) = \tilde{K}(x, y)$.

HS22

D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

b) We claim that f and \tilde{f} are not locally isometric. Suppose that they are locally isometric, then for every point $(x_0, y_0) \in \mathbb{R}_{\geq 0} \times \mathbb{R}$ there exists an open neighborhood and an isometry $\varphi \colon (U,g) \to (\varphi(U),\tilde{g})$. We write $\varphi(x,y) = (\tilde{x}(x,y), \tilde{y}(x,y))$. As the Gauss curvature is intrinsic we have $K(x,y) = K(\varphi(x,y)) = K(\tilde{x}, \tilde{y})$, that is,

$$-\frac{1}{(1+x^2)^2} = -\frac{1}{(1+\tilde{x}^2)^2}$$

and hence $\tilde{x}(x,y) = x$, which implies that $\varphi(x,y) = (x, \tilde{y}(x,y))$.

Notice that the Gauss curvature is constant on curves with constant xcoordinate. Now consider a curve $\gamma(t) = (u(t), y_0)$ with $u(0) = x_0$, parametrized by arc length. The curve γ runs perpendicularly to curves with constant Gauss curvature. Its image $\tilde{\gamma} := \varphi \circ \gamma$ must also be parametrized by arc length and run perpendicularly to curves with constant Gauss curvature. Hence $\tilde{\gamma}(t) = (u(t), \tilde{y}_0)$ and $|\dot{\tilde{\gamma}}(t)|_{\tilde{g}} = |\dot{u}(t)| = 1$, so $u(t) = x_0 \pm t$. Therefore we obtain

$$|\dot{\gamma}(t)|_g = \sqrt{1 + \frac{1}{u^2(t)}} \neq 1,$$

a contradiction to the fact that γ is parametrized by arc length.

Alternative solution:

Now notice that since φ is an isometry it holds that the matrix of the first fundamental form of \tilde{f} in $\varphi(x, y) = (x, \tilde{y})$ with respect to the basis $(\tilde{e}_1, \tilde{e}_2) := (d\varphi_{(x,y)(e_1)}, d\varphi_{(x,y)(e_2)})$ of $T\tilde{U}_{x,\tilde{y}}$ coincides with $(g_{ij}(x, y))$ and is therefore given by

$$\left(\tilde{g}_{ij}(x,\tilde{y})\right)_{(\tilde{e}_1,\tilde{e}_2)} = \begin{pmatrix} 1 + \frac{1}{x^2} & 0\\ 0 & x^2 \end{pmatrix}$$

On the other hand the matrix of the first fundamental form of \tilde{f} with respect to the standard basis is given by $(\tilde{g}_{ij}(x, \tilde{y}))_{(e_1, e_2)} = (\tilde{g}_{ij}(x, \tilde{y}))$ and was computed in a).

The matrix of change of basis from (e_1, e_2) to $(\tilde{e}_1, \tilde{e}_2)$ is given exactly by

$$C \coloneqq d\varphi_{(x,y)} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix},$$

for some a, b. Thus it must hold that

$$\left(\tilde{g}_{ij}(x,\tilde{y})\right)_{(\tilde{e}_1,\tilde{e}_2)} = M \cdot \left(\tilde{g}_{ij}(x,\tilde{y})\right)_{(e_1,e_2)} \cdot M^{-1}.$$

Since the first row of M is $\begin{pmatrix} 1 & 0 \end{pmatrix}$ (as a consequence of the fact that φ fixes the first coordinate) one sees that the first entry of the matrix must remain unchanged, but this is not true. Contradiction.