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1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:

Lemma. Let M be a compact, connected, m-dimensional submanifold of
Rm+1. Suppose that for each vector v ∈ Sm there exists λ = λ(v) ∈ R
such that M is symmetric with respect to reflections on the hyperplane
Ev,λ := {x ∈ Rm+1 : 〈x, v〉 = λ}, then M is a sphere.

Solution. a) First of all, notice that 〈x, v〉 = λ(v) if and only if 〈x−λ(v)v, v〉 =
0, hence Ev,λ(v) = Tλ(v)v(Ev,0) and in fact Ev,λ = Tλv(Ev,0) for all λ, where
Tλ(v)v : x 7→ x+λ(v)v. Moreover the reflection on the hyperplane Ev,0 is given
by Rv,0 : z 7→ z − 2〈z, v〉v. Hence the reflection on the hyperplane Ev,λ(v) is
given by

Rv,λ(v) = Tλ(v)v ◦Rv,0 ◦ T−λ(v)v z 7→ z − 2〈v, z − λ(v)v〉v.

Up to translating M , we might assume that M is symmetric with respect
to the reflections on the hyperplanes Ei := Eei,0 (which is given by changing
the sign of the i-th coordinate)1. By applying successively the reflections on
the hyperplanes E1, . . . , Em+1 we obtain that M is preserved by the map
x 7→ −x.

This implies that λ(v) = 0 for all v ∈ Sm. Indeed, first notice that if
M is symmetric with respect to Ev,λ, then M is symmetric with respect to
E−v,λ. This follows because M is preserved by the map x 7→ −x and also
R−v,λ(z) = −Rv,λ(−z). If λ(v) 6= 0 we can use subsequent reflections on the
parallel hyperplanes Ev,λ(v) 6= E−v,λ(v) to produce an unbounded sequence of
points in M . This is not possible by compactness, hence λ(v) = 0.

Now let p ∈ M \ {0}. For every point q ∈ S|p|(0), the sphere with radius
|p| around 0, there exists a reflection Rv,0 on the hyperplane Ev,0 (explicitly
v := q−p

|q−p|) sending p to q, so q ∈ M . Hence S|p|(0) is contained in M . If M
contains any other point p′ with |p′| 6= |p|, then the same argument shows
that M contains also the sphere of radius |p′| and by connectedness also the
region between the two spheres, contradicting the m-dimensionality of M .

1Denote by T1 : Rm+1 → Rm+1 the translation by −λ(e1) · e1 and show that T1(M)
is symmetric with respect to reflections on the hyperplane Ee1,0. Notice that T1(M) is
still symmetric with respect to the hyperplanes Eei,λ(ei) for i = 2, . . . ,m + 1. Repeat for
T2, . . . , Tm+1.
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2. Non-positively Curved Surfaces

Let M ⊂ R3 be a surface with Gauss curvature K ≤ 0. Prove the following
assertions (we assume a < b).

a) There is no simple geodesic loop (in particular no simple C∞-closed
geodesic) c : [a, b]→M whose trace bounds a topological disk in M .

b) There is no pair of injective geodesics c1, c2 : [a, b] → M such that
c1(a) = c2(a) and c1(b) = c2(b) are the only common points and the
union of the traces bounds a topological disk.

c) If M is homeomorphic to a cylinder and K < 0, then there is no pair
of simple C∞-closed geodesics c1, c2 : [a, b]→M with different traces.

Solution. a) Suppose that there is a geodesic c bounding a simply connected
region D homeomorphic to a disc. Denote by α the external angle in c(a) =
c(b). By the Gauss-Bonnet Theorem (Theorem 6.3) we have∫

D

K dA+ α = 2π,

which is not possible as K ≤ 0 and α ∈ [−π, π].
b) Suppose that the geodesics c1 and c2 enclose a compact simply connec-

ted region D homeomorphic to a disc. Denote by α1, α2 the external angles
between them in p and in q, respectively. Since c1 and c2 are geodesics, it
holds κg = 0. Hence by the Gauss-Bonnet Theorem (Theorem 6.3) we have∫

D

K dA+ α1 + α2 = 2π.

Since K ≤ 0 it follows that α1 +α2 ≥ 2π. Moreover, since α1, α2 ∈ [−π, π] it
must hold α1 = α2 = π. Therefore c.1(0) = c

.
2(0) and thus by uniqueness of

geodesics c1 = c2, a contradiction.
c) Suppose that there are two geodesics c1 and c2. From a) it follows that

c1 and c2 cannot enclose a disc and cannot intersect (else, they would enclose
discs and hence coincide). Therefore they must enclose an annulus.

We parametrize c1, c2 such that their orientation coincides with the one
of the domain that they enclose. Choose two points p on c1 and q on c2 and
a curve c connecting p to q, which doesn’t intersect c1 and c2 in any other
point. Then the concatenation c1 ∪ c ∪ c2 ∪ −c encloses a compact simply
connected region D homeomorphic to a disc. It holds∫

c1 ∪ c ∪ c2 ∪ −c
κg =

∫
c1

κg +

∫
c

κg +

∫
c2

κg +

∫
−c
κg =

∫
c

κg −
∫
c

κg = 0.
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Since the external angles sum to 2π, the Gauss-Bonnet Theorem gives

0 >

∫
D

K dA = 2π −
4∑
i=1

αi = 0,

which gives the desired contradiction.

3. Gauss Map of the Torus

a) Let f : U → Rm+1, U ⊂ Rm open, be an immersion with Gauss map
ν : U → Sm. Assuming that ν is an immersion, prove that

A(ν) =

∫
U

|K|
√
det(gij) dx.

b) Let T ⊂ R3 be a torus. Describe the image of the Gauss map and prove
that ∫

T

K dA = 0,

without using the Theorem of Gauss-Bonnet.

Solution. a) From Weingarten’s equation (Lemma 4.8(2)) it follows that

νi = −
m∑
k=1

hkifk

and hence

〈νi, νj〉 =

〈
−

m∑
k=1

hkifk,−
m∑
l=1

hl jfl

〉

=
m∑
k=1

m∑
l=1

hkih
l
j〈fk, fl〉

=
m∑
k=1

m∑
l=1

hkih
l
jgkl

=
m∑
k=1

m∑
l=1

hikgklh
l
j

So we get

det
(
〈νi, νj〉

)
= det

((
hik
)
ik
◦
(
gkl
)
kl
◦
(
hl j
)
lj

)
= dethik · dethl j · det gkl
= K2 · det gkl
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and therefore

A(ν) =

∫
U

√
det〈νi, νj〉 dx =

∫
U

|K|
√

det gij dx.

b)The image of the Gauss map covers the whole sphere S2. The points
of the circles (r cos y, r sin y,±a) are mapped to the South and North poles,
respectively.

Otherwise there are exactly two points p+ and p− in T with the same
image q ∈ S2, one lying in the outer region T+ with K > 0 and one lying in
the inner region T− with K < 0 (see also later). Therefore∫

T

K dA =

∫
T+

K dA+

∫
T−

K dA = A(ν+)− A(ν−) = A(S2)− A(S2) = 0.
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Alternative Solution. The parametrization of the torus is given by f : [0, 2π]2 →
R3 with

f(x, y) = ((r + a cosx) cos y, (r + a cosx) sin y, a sinx) ,

where r > a > 0. It holds

f1(x, y) = (−a sinx cos y,−a sinx sin y, a cosx) ,
f2(x, y) = (−(r + a cosx) sin y, (r + a cosx) cos y), 0) ,

f11(x, y) = (−a cosx cos y,−a cosx sin y,−a sinx) ,
f12(x, y) = (a sinx sin y,−a sinx cos y, 0) ,
f22(x, y) = (−(r + a cosx) cos y,−(r + a cosx) sin y, 0)

and

ν(x, y) =
f1 × f2
|f1 × f2|

= (− cosx cos y,− cosx sin y,− sinx).

From the above computations we obtain

(gij) =

(
a2 0
0 (r + a cosx)2

)
,

(hij) =

(
a 0
0 (r + a cosx) cosx

)
.

For the Gauss curvature it holds

K =
det (hij)

det (gij)
=
a(r + a cosx) cosx

a2(r + a cosx)2
=

cosx

a(r + a cosx)

and therefore∫
T

K dA =

∫ 2π

0

∫ 2π

0

cosx

a(r + a cosx)

√
det (gij) dx dy = 2π

∫ 2π

0

cosx dx = 0.
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