Solutions 7

1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:
Lemma. Let M be a compact, connected, m-dimensional submanifold of \mathbb{R}^{m+1}. Suppose that for each vector $v \in S^{m}$ there exists $\lambda=\lambda(v) \in \mathbb{R}$ such that M is symmetric with respect to reflections on the hyperplane $E_{v, \lambda}:=\left\{x \in \mathbb{R}^{m+1}:\langle x, v\rangle=\lambda\right\}$, then M is a sphere.

Solution. a) First of all, notice that $\langle x, v\rangle=\lambda(v)$ if and only if $\langle x-\lambda(v) v, v\rangle=$ 0 , hence $E_{v, \lambda(v)}=T_{\lambda(v) v}\left(E_{v, 0}\right)$ and in fact $E_{v, \lambda}=T_{\lambda v}\left(E_{v, 0}\right)$ for all λ, where $T_{\lambda(v) v}: x \mapsto x+\lambda(v) v$. Moreover the reflection on the hyperplane $E_{v, 0}$ is given by $R_{v, 0}: z \mapsto z-2\langle z, v\rangle v$. Hence the reflection on the hyperplane $E_{v, \lambda(v)}$ is given by

$$
R_{v, \lambda(v)}=T_{\lambda(v) v} \circ R_{v, 0} \circ T_{-\lambda(v) v} \quad z \mapsto z-2\langle v, z-\lambda(v) v\rangle v .
$$

Up to translating M, we might assume that M is symmetric with respect to the reflections on the hyperplanes $E_{i}:=E_{e_{i}, 0}$ (which is given by changing the sign of the i-th coordinate ${ }^{1}$. By applying successively the reflections on the hyperplanes E_{1}, \ldots, E_{m+1} we obtain that M is preserved by the map $x \mapsto-x$.

This implies that $\lambda(v)=0$ for all $v \in S^{m}$. Indeed, first notice that if M is symmetric with respect to $E_{v, \lambda}$, then M is symmetric with respect to $E_{-v, \lambda}$. This follows because M is preserved by the map $x \mapsto-x$ and also $R_{-v, \lambda}(z)=-R_{v, \lambda}(-z)$. If $\lambda(v) \neq 0$ we can use subsequent reflections on the parallel hyperplanes $E_{v, \lambda(v)} \neq E_{-v, \lambda(v)}$ to produce an unbounded sequence of points in M. This is not possible by compactness, hence $\lambda(v)=0$.

Now let $p \in M \backslash\{0\}$. For every point $q \in S_{|p|}(0)$, the sphere with radius $|p|$ around 0 , there exists a reflection $R_{v, 0}$ on the hyperplane $E_{v, 0}$ (explicitly $\left.v:=\frac{q-p}{|q-p|}\right)$ sending p to q, so $q \in M$. Hence $S_{|p|}(0)$ is contained in M. If M contains any other point p^{\prime} with $\left|p^{\prime}\right| \neq|p|$, then the same argument shows that M contains also the sphere of radius $\left|p^{\prime}\right|$ and by connectedness also the region between the two spheres, contradicting the m-dimensionality of M.

[^0]
2. Non-positively Curved Surfaces

Let $M \subset \mathbb{R}^{3}$ be a surface with Gauss curvature $K \leq 0$. Prove the following assertions (we assume $a<b$).
a) There is no simple geodesic loop (in particular no simple C^{∞}-closed geodesic) $c:[a, b] \rightarrow M$ whose trace bounds a topological disk in M.
b) There is no pair of injective geodesics $c_{1}, c_{2}:[a, b] \rightarrow M$ such that $c_{1}(a)=c_{2}(a)$ and $c_{1}(b)=c_{2}(b)$ are the only common points and the union of the traces bounds a topological disk.
c) If M is homeomorphic to a cylinder and $K<0$, then there is no pair of simple C^{∞}-closed geodesics $c_{1}, c_{2}:[a, b] \rightarrow M$ with different traces.

Solution. a) Suppose that there is a geodesic c bounding a simply connected region D homeomorphic to a disc. Denote by α the external angle in $c(a)=$ $c(b)$. By the Gauss-Bonnet Theorem (Theorem 6.3) we have

$$
\int_{D} K \mathrm{~d} A+\alpha=2 \pi
$$

which is not possible as $K \leq 0$ and $\alpha \in[-\pi, \pi]$.
b) Suppose that the geodesics c_{1} and c_{2} enclose a compact simply connected region D homeomorphic to a disc. Denote by α_{1}, α_{2} the external angles between them in p and in q, respectively. Since c_{1} and c_{2} are geodesics, it holds $\kappa_{g}=0$. Hence by the Gauss-Bonnet Theorem (Theorem 6.3) we have

$$
\int_{D} K \mathrm{~d} A+\alpha_{1}+\alpha_{2}=2 \pi
$$

Since $K \leq 0$ it follows that $\alpha_{1}+\alpha_{2} \geq 2 \pi$. Moreover, since $\alpha_{1}, \alpha_{2} \in[-\pi, \pi]$ it must hold $\alpha_{1}=\alpha_{2}=\pi$. Therefore $\dot{c}_{1}(0)=\dot{c}_{2}(0)$ and thus by uniqueness of geodesics $c_{1}=c_{2}$, a contradiction.
c) Suppose that there are two geodesics c_{1} and c_{2}. From a) it follows that c_{1} and c_{2} cannot enclose a disc and cannot intersect (else, they would enclose discs and hence coincide). Therefore they must enclose an annulus.

We parametrize c_{1}, c_{2} such that their orientation coincides with the one of the domain that they enclose. Choose two points p on c_{1} and q on c_{2} and a curve c connecting p to q, which doesn't intersect c_{1} and c_{2} in any other point. Then the concatenation $c_{1} \cup c \cup c_{2} \cup-c$ encloses a compact simply connected region D homeomorphic to a disc. It holds

$$
\int_{c_{1} \cup c \cup c_{2} \cup-c} \kappa_{g}=\int_{c_{1}} \kappa_{g}+\int_{c} \kappa_{g}+\int_{c_{2}} \kappa_{g}+\int_{-c} \kappa_{g}=\int_{c} \kappa_{g}-\int_{c} \kappa_{g}=0 .
$$

Since the external angles sum to 2π, the Gauss-Bonnet Theorem gives

$$
0>\int_{D} K \mathrm{~d} A=2 \pi-\sum_{i=1}^{4} \alpha_{i}=0
$$

which gives the desired contradiction.

3. Gauss Map of the Torus

a) Let $f: U \rightarrow \mathbb{R}^{m+1}, U \subset \mathbb{R}^{m}$ open, be an immersion with Gauss map $\nu: U \rightarrow S^{m}$. Assuming that ν is an immersion, prove that

$$
A(\nu)=\int_{U}|K| \sqrt{\operatorname{det}\left(g_{i j}\right)} \mathrm{d} x .
$$

b) Let $T \subset \mathbb{R}^{3}$ be a torus. Describe the image of the Gauss map and prove that

$$
\int_{T} K \mathrm{~d} A=0
$$

without using the Theorem of Gauss-Bonnet.
Solution. a) From Weingarten's equation (Lemma 4.8(2)) it follows that

$$
\nu_{i}=-\sum_{k=1}^{m} h_{i}^{k} f_{k}
$$

and hence

$$
\begin{aligned}
\left\langle\nu_{i}, \nu_{j}\right\rangle & =\left\langle-\sum_{k=1}^{m} h_{i}^{k} f_{k},-\sum_{l=1}^{m} h_{j}^{l} f_{l}\right\rangle \\
& =\sum_{k=1}^{m} \sum_{l=1}^{m} h_{i}^{k} h^{l}{ }_{j}\left\langle f_{k}, f_{l}\right\rangle \\
& =\sum_{k=1}^{m} \sum_{l=1}^{m} h_{i}^{k}{ }_{i} h_{j}^{l} g_{k l} \\
& =\sum_{k=1}^{m} \sum_{l=1}^{m} h^{i}{ }_{k} g_{k l} h_{j}^{l}
\end{aligned}
$$

So we get

$$
\begin{aligned}
\operatorname{det}\left(\left\langle\nu_{i}, \nu_{j}\right\rangle\right) & =\operatorname{det}\left(\left(h^{i}{ }_{k}\right)_{i k} \circ\left(g_{k l}\right)_{k l} \circ\left(h^{l}{ }_{j}\right)_{l j}\right) \\
& =\operatorname{det} h^{i}{ }_{k} \cdot \operatorname{det} h^{l}{ }_{j} \cdot \operatorname{det} g_{k l} \\
& =K^{2} \cdot \operatorname{det} g_{k l}
\end{aligned}
$$

Prof. Dr. Joaquim Serra
and therefore

$$
A(\nu)=\int_{U} \sqrt{\operatorname{det}\left\langle\nu_{i}, \nu_{j}\right\rangle} d x=\int_{U}|K| \sqrt{\operatorname{det} g_{i j}} d x
$$

b)The image of the Gauss map covers the whole sphere S^{2}. The points of the circles $(r \cos y, r \sin y, \pm a)$ are mapped to the South and North poles, respectively.

Otherwise there are exactly two points p_{+}and p_{-}in T with the same image $q \in S^{2}$, one lying in the outer region T_{+}with $K>0$ and one lying in the inner region T_{-}with $K<0$ (see also later). Therefore

$$
\int_{T} K \mathrm{~d} A=\int_{T_{+}} K \mathrm{~d} A+\int_{T_{-}} K \mathrm{~d} A=A\left(\nu_{+}\right)-A\left(\nu_{-}\right)=A\left(S^{2}\right)-A\left(S^{2}\right)=0 .
$$

Prof. Dr. Joaquim Serra
Alternative Solution. The parametrization of the torus is given by $f:[0,2 \pi]^{2} \rightarrow$ \mathbb{R}^{3} with

$$
f(x, y)=((r+a \cos x) \cos y,(r+a \cos x) \sin y, a \sin x),
$$

where $r>a>0$. It holds

$$
\begin{aligned}
f_{1}(x, y) & =(-a \sin x \cos y,-a \sin x \sin y, a \cos x), \\
f_{2}(x, y) & =(-(r+a \cos x) \sin y,(r+a \cos x) \cos y), 0), \\
f_{11}(x, y) & =(-a \cos x \cos y,-a \cos x \sin y,-a \sin x), \\
f_{12}(x, y) & =(a \sin x \sin y,-a \sin x \cos y, 0), \\
f_{22}(x, y) & =(-(r+a \cos x) \cos y,-(r+a \cos x) \sin y, 0)
\end{aligned}
$$

and

$$
\nu(x, y)=\frac{f_{1} \times f_{2}}{\left|f_{1} \times f_{2}\right|}=(-\cos x \cos y,-\cos x \sin y,-\sin x) .
$$

From the above computations we obtain

$$
\begin{aligned}
& \left(g_{i j}\right)=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & (r+a \cos x)^{2}
\end{array}\right), \\
& \left(h_{i j}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & (r+a \cos x) \cos x
\end{array}\right) .
\end{aligned}
$$

For the Gauss curvature it holds

$$
K=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}=\frac{a(r+a \cos x) \cos x}{a^{2}(r+a \cos x)^{2}}=\frac{\cos x}{a(r+a \cos x)}
$$

and therefore

$$
\int_{T} K \mathrm{~d} A=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\cos x}{a(r+a \cos x)} \sqrt{\operatorname{det}\left(g_{i j}\right)} \mathrm{d} x \mathrm{~d} y=2 \pi \int_{0}^{2 \pi} \cos x \mathrm{~d} x=0 .
$$

[^0]: ${ }^{1}$ Denote by $T_{1}: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m+1}$ the translation by $-\lambda\left(e_{1}\right) \cdot e_{1}$ and show that $T_{1}(M)$ is symmetric with respect to reflections on the hyperplane $E_{e_{1}, 0}$. Notice that $T_{1}(M)$ is still symmetric with respect to the hyperplanes $E_{e_{i}, \lambda\left(e_{i}\right)}$ for $i=2, \ldots, m+1$. Repeat for T_{2}, \ldots, T_{m+1}.

