D-MATH Differential Geometry I HS22
Prof. Dr. Joaquim Serra

Solutions 8

1. Chebyshev Nets
Let f: U — R? be a parametrized surface with U = (0, A) x (0, B) C R.
a) Show that the following two conditions are equivalent:

(i) For every rectangle R = [uy, u; + a] X [ug, ug + b] C U the opposite
sides of f(R) have the same length.

2\ 9g11 _ Og22 —
(i) 3o =%2=0o0nU.

If f satisfies one of the equivalent conditions, then its parameter lines
constitute a Chebyshev net.

b) Show that for such a parametrization there exists a change of coordi-
nates ¢: U — U such that the first fundamental form of f = fop™!

has the form
(Gi7) = 1 COS W
9ii) =\ cosw 1 ’

where w is the angle between the parameter lines of f.

Solution. a) For a rectangle R = [uy,u; + a] X [ug, us + b] C U we consider
the two opposite boundary curves 7v,7: [0,a] — U:

Y(t) = (ur + 1, up),
A(t) = (u1 +t,us + b).

AS Y(t) = F(t) = e, it holds that the length of v and 4 satisfy L(y) =
\/911 U1+tUQ dtandL f() \/gllul—i—tug—i—b)dt

Now, if L(7) = L(3)(= L(f 04) = L(f 04)) then

/ \/911(U1+t,U2)dt:/ \/911(U1+t7U2+b)dt
0 0

and as this holds for all @ € [0, A — u;] we can differentiate with respect to a
and obtain

g11(ur +t,uz) = gui(ur +t,ugs +0).

Therefore g1; is constant along the uo,-Axis, so % 0. Analogously we
obtain 889—;12 = 0.

On the other hand if 889—;21 = 0, then g1 (uy + ¢, uz) = g11(uy +t,us +0) for
all b and therefore L(y) = L(%). Analogously for the other two sides.
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b) Define ¢(uy, us) = (wy(uq), wa(us)), where
wi(x) = /0m V11 (t, ug) dt,
ws(y) = /Oy v 922(uq, t) dt.

Notice that because of (ii) w; and wy are independent from the choice of us
and uq, respectively. Then

Hence ¢ and d¢ are injective and ¢ is a diffeomorphism onto its image U =

¢(U). Now,
0
(dqﬁ)_l = <\/g? 1 )
V922

~ ~ B _ 1 1 i
Gij = 9(6i7€j) =g (dﬁb 1<€¢)7d¢ 1(€j>) =9 <\/ﬁ€z’7 \/ﬁ‘fj) = \/g_f—\/%’

and hence

SO §11 = (oo = 1 and g9 = |<£||J}22>| = COSW.

2. Isoperimetric problem on a Cartan-Hadamard surface

Let f : R? — R3 be a parametrized surface, such that f is a homeomorphism
between R? and M := f(R?). Assume that f has nonnegative Gauss curva-
ture K. Given 2 C M bounded, we say that 90 is C? if it consists of a finite
disjoint union of C? simple closed curves. For such € define the isoperimetric
quotient

_ length(09)

(0 :
() area(€)z

a) Suppose first that M is isometric to the Euclidean plane. Show that if
Qp is a minimizer of Z (such that 99 is C?) then

Z(Q) = V4r and Qg is an Euclidean disc.

Hint: Show that, by minimality, €2y must consist of only one closed
simple curve «, and prove (using the first variation of arc length) that
the geodesic curvature x, of v must be constant. Deduce that v must
trace a circle in R2.
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b) For general K < 0, show that if € is a minimizer of Z (with 9 of
class C?) then it must be K = 0 in €.

Hint: Using Q, = f(B,(0)), with » — 07 as competitors, show that
Z(Q) < v/4m. Show that, as in a), 9 must consist of only one closed
simple curve v. Let v be the inwards unit normal to 0§, define (for
e small) v.(t) := v(t) + ev(t), and let . be the bounded connected
component of M \ image(v.). Show that d%LZOI(QE) < 0,and < 0
unless K =0 in Q.

Solution. a) We can assume without loss of generality M = R?, since the
isoperimetric problem is intrinsic. Note that if )y has multiple components
each is a closed simple curve. Hence, the image of each of these curves it di-
vides R? into two connected components (one bounded and one unbounded).
Now, the union of (the closures of) the bounded components is a new set
which contains €2y and whose boundary is contained in 0€)y. Hence, this set
obtained by “filling the holes” it would have more area and less perimeter,
contradicting the fact that {2y minimizes Z.

Let v : (0,L) — R? be a curve tracing 0, parametrized by the arc
length, and let v : [0,L] — S' be the inwards unit normal. Given ¢ €
C?oued([a, b)) define 4. (t) := (¢ )+€§( v ( ) and let Q. be the bounded connec-
ted component of R? \ image(v.). If fo = 0 then 4 ‘ area(Q ) = 0.
Hence be minimality it must be de| length fo kg(t)E(t)dt = 0. Since
¢ is an arbitrary average zero smooth functlon we deduce that Kg = K =
constant or equivalently ¢’ = kv. This easily implies that ¢ traces a circle
with radius 1/k.

b) Reparametrize f(R?) as f(z) = f(Ax), where A is a matrix with
nonzero determinant, so that go = Id, so |g, — Id| < Cr for |z| < r. Then,
area(f(B,(0))) = r2(1 + O(r)) and length(dB,) = 2xr(1 + O(r)). It follows
that

Z(f(B.(0)) = Vir +o(1) asr 0.

Since by assumption ) is a minimizer of Z it must be Z(Qq) < Z(f(B,(0))
for all » > 0 and hence Z(Qy) < 4.

As in a) —now using that M is homeomophic to R?—, 9Q must consist
of only one simple closed curve fo~. Let us take v oriented counterclockwise
and let v be the inwards unit normal to J€ (as in the Gauss-Bonet setting).
Define (for € small) v.(t) := v(t)+ev(t), and let 2. be the bounded connected
component of M \ image(7.). Let us show that show that &£| _Z(€.) <0,
and < 0 unless K = 0 in €.

Indeed, on the one hand d%|gzoarea(ﬂs) = —length(9€). On the other

hand, 4 __olength(Q.) = — fBQo Kyds

e=0
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Now, using Gauss-Bonnet, faﬂo Kgds = 21 — fQo KdA > 2 (>27 unless
K =0). Hence,

4 (0 = d%‘gzolength(laﬁg) B llength(aﬁg)%k:g

°eT area({2p)2 2 area(£2p)2
27 1 length(9€))?

area(Q9)z 2 area({)2

2 N 1 Z(090)?

area(€)z  2arca(Q)2

area(€).)

IN

(<) —

Y

since Z(£2)? < 4. This contradicts the minimality of Qo unless the second
inequality is an equality, which implies that K = 0 in €.

3. The Brouwer Fixed Point Theorem
The Brouwer fixed point theorem states:

Theorem. Let D = {x € R" : |z| < 1} be the unit ball. Then every
continuous map f: D — D has a fized point.

a) Let M C R3 be a surface and D C M aregion diffeomorphic to the disc
D= {z €R* : [|z] <1}. Consider a tangent vector field X: D — R?
which on dD is pointing outward. Show that X has zeros in the interior
of D.

b) Prove the Brouwer fixed point theorem in two dimensions using part

a).

Solution. a) It suffices to prove the statement for X: D — R2.

We want to use Poincaré index theorem, but for that we must have a
compact surface without boundary.

First we can modify X such that on 0D it points radially towards the
exterior. Then we consider Y: D — R?, Y := —X, which is a vector field on
D pointing radially towards the interior on every point of 0D.

Now identify D with an hemisphere of S?, then we can glue two hemis-
phere together along their boundaries to obtain S2. By considering the vector
field X on one hemisphere and Y on the other we obtain a continuous vector
field Z: S? — R3, which is nowhere vanishing on the equator. As seen in
class, the Poincaré index theorem implies that Z must have a zero, but since
there are non on the equator we conclude that X or —X (and hence X)) must
have at least one singularity in the interior of D.
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b) Let f: D — D be a continuous map. We define the vector field
X:D—R?by X(x):=x— f(x). For z € 9D it holds

(X(2),2) = (x,2) = (f(2),2) 2 1 = [a][f(x)] = 0.

This shows that if X doesn’t vanish on 9D, then it points outward every-
where. In this case it follows from a) that it has a zero in the interior of D.
In both cases there is z¢ with X (z¢) = 0, that is f(zg) = 0.



