Solutions 8

1. Chebyshev Nets

Let $f: U \rightarrow \mathbb{R}^{3}$ be a parametrized surface with $U=(0, A) \times(0, B) \subset \mathbb{R}^{2}$.
a) Show that the following two conditions are equivalent:
(i) For every rectangle $R=\left[u_{1}, u_{1}+a\right] \times\left[u_{2}, u_{2}+b\right] \subset U$ the opposite sides of $f(R)$ have the same length.
(ii) $\frac{\partial g_{11}}{\partial u_{2}}=\frac{\partial g_{22}}{\partial u_{1}} \equiv 0$ on U.

If f satisfies one of the equivalent conditions, then its parameter lines constitute a Chebyshev net.
b) Show that for such a parametrization there exists a change of coordinates $\varphi: U \rightarrow \tilde{U}$ such that the first fundamental form of $\tilde{f}:=f \circ \varphi^{-1}$ has the form

$$
\left(\tilde{g}_{i j}\right)=\left(\begin{array}{cc}
1 & \cos \omega \\
\cos \omega & 1
\end{array}\right)
$$

where ω is the angle between the parameter lines of f.
Solution. a) For a rectangle $R=\left[u_{1}, u_{1}+a\right] \times\left[u_{2}, u_{2}+b\right] \subset U$ we consider the two opposite boundary curves $\gamma, \tilde{\gamma}:[0, a] \rightarrow U$:

$$
\begin{array}{r}
\gamma(t):=\left(u_{1}+t, u_{2}\right), \\
\tilde{\gamma}(t):=\left(u_{1}+t, u_{2}+b\right) .
\end{array}
$$

As $\dot{\gamma}(t)=\dot{\tilde{\gamma}}(t)=e_{1}$, it holds that the length of γ and $\tilde{\gamma}$ satisfy $L(\gamma)=$ $\int_{0}^{a} \sqrt{g_{11}\left(u_{1}+t, u_{2}\right)} \mathrm{d} t$ and $L(\tilde{\gamma})=\int_{0}^{a} \sqrt{g_{11}\left(u_{1}+t, u_{2}+b\right)} \mathrm{d} t$.

Now, if $L(\gamma)=L(\tilde{\gamma})(=L(f \circ \gamma)=L(f \circ \tilde{\gamma}))$ then

$$
\int_{0}^{a} \sqrt{g_{11}\left(u_{1}+t, u_{2}\right)} \mathrm{d} t=\int_{0}^{a} \sqrt{g_{11}\left(u_{1}+t, u_{2}+b\right)} \mathrm{d} t
$$

and as this holds for all $a \in\left[0, A-u_{1}\right]$ we can differentiate with respect to a and obtain

$$
g_{11}\left(u_{1}+t, u_{2}\right)=g_{11}\left(u_{1}+t, u_{2}+b\right) .
$$

Therefore g_{11} is constant along the u_{2}-Axis, so $\frac{\partial g_{11}}{\partial u_{2}}=0$. Analogously we obtain $\frac{\partial g_{22}}{\partial u_{1}}=0$.

On the other hand if $\frac{\partial g_{11}}{\partial u_{2}}=0$, then $g_{11}\left(u_{1}+t, u_{2}\right)=g_{11}\left(u_{1}+t, u_{2}+b\right)$ for all b and therefore $L(\gamma)=L(\tilde{\gamma})$. Analogously for the other two sides.

Prof. Dr. Joaquim Serra
b) Define $\phi\left(u_{1}, u_{2}\right):=\left(w_{1}\left(u_{1}\right), w_{2}\left(u_{2}\right)\right)$, where

$$
\begin{aligned}
& w_{1}(x):=\int_{0}^{x} \sqrt{g_{11}\left(t, u_{2}\right)} \mathrm{d} t \\
& w_{2}(y):=\int_{0}^{y} \sqrt{g_{22}\left(u_{1}, t\right)} \mathrm{d} t .
\end{aligned}
$$

Notice that because of (ii) w_{1} and w_{2} are independent from the choice of u_{2} and u_{1}, respectively. Then

$$
d \phi=\left(\begin{array}{cc}
\sqrt{g_{11}} & 0 \\
0 & \sqrt{g_{22}}
\end{array}\right)
$$

Hence ϕ and $d \phi$ are injective and ϕ is a diffeomorphism onto its image $\tilde{U}:=$ $\phi(U)$. Now,

$$
(d \phi)^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{g_{11}}} & 0 \\
0 & \frac{1}{\sqrt{g_{22}}}
\end{array}\right)
$$

and hence

$$
\tilde{g}_{i j}=\tilde{g}\left(e_{i}, e_{j}\right)=g\left(d \phi^{-1}\left(e_{i}\right), d \phi^{-1}\left(e_{j}\right)\right)=g\left(\frac{1}{\sqrt{g_{i i}}} e_{i}, \frac{1}{\sqrt{g_{j j}}} e_{j}\right)=\frac{g_{i j}}{\sqrt{g_{i i}} \sqrt{g_{j j}}},
$$

so $\tilde{g}_{11}=\tilde{g}_{22}=1$ and $\tilde{g}_{12}=\frac{\left\langle f_{1}, f_{2}\right\rangle}{\left|f_{1}\right|\left|f_{2}\right|}=\cos \omega$.

2. Isoperimetric problem on a Cartan-Hadamard surface

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a parametrized surface, such that f is a homeomorphism between \mathbb{R}^{2} and $M:=f\left(\mathbb{R}^{2}\right)$. Assume that f has nonnegative Gauss curvature K. Given $\Omega \subset M$ bounded, we say that $\partial \Omega$ is C^{2} if it consists of a finite disjoint union of C^{2} simple closed curves. For such Ω define the isoperimetric quotient

$$
\mathcal{I}(\Omega):=\frac{\operatorname{length}(\partial \Omega)}{\operatorname{area}(\Omega)^{\frac{1}{2}}}
$$

a) Suppose first that M is isometric to the Euclidean plane. Show that if Ω_{0} is a minimizer of \mathcal{I} (such that $\partial \Omega_{0}$ is C^{2}) then

$$
\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi} \text { and } \Omega_{0} \text { is an Euclidean disc. }
$$

Hint: Show that, by minimality, $\partial \Omega_{0}$ must consist of only one closed simple curve γ, and prove (using the first variation of arc length) that the geodesic curvature κ_{g} of γ must be constant. Deduce that γ must trace a circle in \mathbb{R}^{2}.

Prof. Dr. Joaquim Serra
b) For general $K \leq 0$, show that if Ω_{0} is a minimizer of \mathcal{I} (with $\partial \Omega_{0}$ of class C^{2}) then it must be $K \equiv 0$ in Ω_{0}.
Hint: Using $\Omega_{r}=f\left(B_{r}(0)\right)$, with $r \rightarrow 0^{+}$as competitors, show that $\mathcal{I}\left(\Omega_{0}\right) \leq \sqrt{4 \pi}$. Show that, as in a), $\partial \Omega_{0}$ must consist of only one closed simple curve γ. Let ν be the inwards unit normal to $\partial \Omega_{0}$, define (for ε small) $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \nu(t)$, and let Ω_{ε} be the bounded connected component of $M \backslash$ image $\left(\gamma_{\varepsilon}\right)$. Show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} I\left(\Omega_{\varepsilon}\right) \leq 0$, and <0 unless $K \equiv 0$ in Ω_{0}.

Solution. a) We can assume without loss of generality $M=\mathbb{R}^{2}$, since the isoperimetric problem is intrinsic. Note that if Ω_{0} has multiple components each is a closed simple curve. Hence, the image of each of these curves it divides \mathbb{R}^{2} into two connected components (one bounded and one unbounded). Now, the union of (the closures of) the bounded components is a new set which contains Ω_{0} and whose boundary is contained in $\partial \Omega_{0}$. Hence, this set obtained by "filling the holes" it would have more area and less perimeter, contradicting the fact that Ω_{0} minimizes \mathcal{I}.

Let $\gamma:(0, L) \rightarrow \mathbb{R}^{2}$ be a curve tracing $\partial \Omega_{0}$, parametrized by the arc length, and let $\nu:[0, L] \rightarrow \mathbb{S}^{1}$ be the inwards unit normal. Given $\xi \in$ $C_{\text {closed }}^{2}([a, b])$ define $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \xi(t) \nu(t)$ and let Ω_{ε} be the bounded connected component of $\mathbb{R}^{2} \backslash$ image $\left(\gamma_{\varepsilon}\right)$. If $\int_{0}^{L} \xi(t)=0$ then $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{area}\left(\Omega_{\varepsilon}\right)=0$. Hence be minimality it must be $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$ length $\left(\Omega_{\varepsilon}\right)=\int_{0}^{L} \kappa_{g}(t) \xi(t) d t=0$. Since ξ is an arbitrary average zero smooth function we deduce that $\kappa_{g} \equiv \kappa=$ constant or equivalently $c^{\prime \prime} \equiv \kappa \nu$. This easily implies that c traces a circle with radius $1 / \kappa$.
b) Reparametrize $f\left(\mathbb{R}^{2}\right)$ as $\tilde{f}(x)=f(A x)$, where A is a matrix with nonzero determinant, so that $g_{0}=\mathrm{Id}$, so $\left|g_{x}-\mathrm{Id}\right| \leq C r$ for $|x|<r$. Then, area $\left(\tilde{f}\left(B_{r}(0)\right)\right)=r^{2}(1+O(r))$ and length $\left(\partial B_{r}\right)=2 \pi r(1+O(r))$. It follows that

$$
\mathcal{I}\left(\tilde{f}\left(B_{r}(0)\right)=\sqrt{4 \pi}+o(1) \quad \text { as } r \downarrow 0 .\right.
$$

Since by assumption Ω_{0} is a minimizer of \mathcal{I} it must be $\mathcal{I}\left(\Omega_{0}\right) \leq \mathcal{I}\left(\tilde{f}\left(B_{r}(0)\right)\right.$ for all $r>0$ and hence $\mathcal{I}\left(\Omega_{0}\right) \leq \sqrt{4 \pi}$.

As in a) -now using that M is homeomophic to $\mathbb{R}^{2}-, \partial \Omega_{0}$ must consist of only one simple closed curve $f \circ \gamma$. Let us take γ oriented counterclockwise and let ν be the inwards unit normal to $\partial \Omega_{0}$ (as in the Gauss-Bonet setting). Define (for ε small) $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \nu(t)$, and let Ω_{ε} be the bounded connected component of $M \backslash \operatorname{image}\left(\gamma_{\varepsilon}\right)$. Let us show that show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathcal{I}\left(\Omega_{\varepsilon}\right) \leq 0$, and <0 unless $K \equiv 0$ in Ω_{0}.

Indeed, on the one hand $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$ area $\left(\Omega_{\varepsilon}\right)=-$ length $\left(\partial \Omega_{0}\right)$. On the other hand, $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{length}\left(\Omega_{\varepsilon}\right)=-\int_{\partial \Omega_{0}} \kappa_{g} d s$

Now, using Gauss-Bonnet, $\int_{\partial \Omega_{0}} \kappa_{g} d s=2 \pi-\int_{\Omega_{0}} K d A \geq 2 \pi(>2 \pi$ unless $K \equiv 0)$. Hence,

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathcal{I}\left(\Omega_{\varepsilon}\right) & =\frac{\left.\frac{d}{d}\right|_{\varepsilon=0} \operatorname{length}\left(\partial \Omega_{\varepsilon}\right)}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}}-\frac{1}{2} \frac{\left.\operatorname{length}\left(\partial \Omega_{0}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{area}\left(\Omega_{\varepsilon}\right)}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{3}{2}}} \\
& \leq(<)-\frac{2 \pi}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}}+\frac{1}{2} \frac{\operatorname{length}\left(\partial \Omega_{0}\right)^{2}}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{3}{2}}} \\
& =-\frac{2 \pi}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}}+\frac{1}{2} \frac{\mathcal{I}\left(\partial \Omega_{0}\right)^{2}}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}} \leq 0,
\end{aligned}
$$

since $\mathcal{I}\left(\Omega_{0}\right)^{2} \leq 4 \pi$. This contradicts the minimality of Ω_{0} unless the second inequality is an equality, which implies that $K \equiv 0$ in Ω_{0}.

3. The Brouwer Fixed Point Theorem

The Brouwer fixed point theorem states:
Theorem. Let $D:=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ be the unit ball. Then every continuous map $f: D \rightarrow D$ has a fixed point.
a) Let $M \subset \mathbb{R}^{3}$ be a surface and $\tilde{D} \subset M$ a region diffeomorphic to the disc $D:=\left\{x \in \mathbb{R}^{2}:|x| \leq 1\right\}$. Consider a tangent vector field $X: \tilde{D} \rightarrow \mathbb{R}^{3}$ which on $\partial \tilde{D}$ is pointing outward. Show that X has zeros in the interior of \tilde{D}.
b) Prove the Brouwer fixed point theorem in two dimensions using part a).

Solution. a) It suffices to prove the statement for $X: D \rightarrow \mathbb{R}^{2}$.
We want to use Poincaré index theorem, but for that we must have a compact surface without boundary.

First we can modify X such that on ∂D it points radially towards the exterior. Then we consider $Y: D \rightarrow \mathbb{R}^{2}, Y:=-X$, which is a vector field on D pointing radially towards the interior on every point of ∂D.

Now identify D with an hemisphere of S^{2}, then we can glue two hemisphere together along their boundaries to obtain S^{2}. By considering the vector field X on one hemisphere and Y on the other we obtain a continuous vector field $Z: S^{2} \rightarrow \mathbb{R}^{3}$, which is nowhere vanishing on the equator. As seen in class, the Poincaré index theorem implies that Z must have a zero, but since there are non on the equator we conclude that X or $-X$ (and hence X) must have at least one singularity in the interior of D.

Prof. Dr. Joaquim Serra
b) Let $f: D \rightarrow D$ be a continuous map. We define the vector field $X: D \rightarrow \mathbb{R}^{2}$ by $X(x):=x-f(x)$. For $x \in \partial D$ it holds

$$
\langle X(x), x\rangle=\langle x, x\rangle-\langle f(x), x\rangle \geq 1-|x||f(x)| \geq 0 .
$$

This shows that if X doesn't vanish on ∂D, then it points outward everywhere. In this case it follows from a) that it has a zero in the interior of D. In both cases there is x_{0} with $X\left(x_{0}\right)=0$, that is $f\left(x_{0}\right)=x_{0}$.

