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1. Chebyshev Nets

Let f : U → R3 be a parametrized surface with U = (0, A)× (0, B) ⊂ R2.

a) Show that the following two conditions are equivalent:

(i) For every rectangle R = [u1, u1 + a]×[u2, u2 + b] ⊂ U the opposite
sides of f(R) have the same length.

(ii) ∂g11
∂u2

= ∂g22
∂u1
≡ 0 on U .

If f satisfies one of the equivalent conditions, then its parameter lines
constitute a Chebyshev net.

b) Show that for such a parametrization there exists a change of coordi-
nates ϕ : U → Ũ such that the first fundamental form of f̃ := f ◦ ϕ−1

has the form
(g̃ij) =

(
1 cosω

cosω 1

)
,

where ω is the angle between the parameter lines of f .

Solution. a) For a rectangle R = [u1, u1 + a] × [u2, u2 + b] ⊂ U we consider
the two opposite boundary curves γ, γ̃ : [0, a]→ U :

γ(t) := (u1 + t, u2),

γ̃(t) := (u1 + t, u2 + b).

As γ. (t) = γ̃
.
(t) = e1, it holds that the length of γ and γ̃ satisfy L(γ) =∫ a

0

√
g11(u1 + t, u2) dt and L(γ̃) =

∫ a

0

√
g11(u1 + t, u2 + b) dt.

Now, if L(γ) = L(γ̃)(= L(f ◦ γ) = L(f ◦ γ̃)) then∫ a

0

√
g11(u1 + t, u2) dt =

∫ a

0

√
g11(u1 + t, u2 + b) dt

and as this holds for all a ∈ [0, A− u1] we can differentiate with respect to a
and obtain

g11(u1 + t, u2) = g11(u1 + t, u2 + b).

Therefore g11 is constant along the u2-Axis, so ∂g11
∂u2

= 0. Analogously we
obtain ∂g22

∂u1
= 0.

On the other hand if ∂g11
∂u2

= 0, then g11(u1 + t, u2) = g11(u1 + t, u2 + b) for
all b and therefore L(γ) = L(γ̃). Analogously for the other two sides.
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b) Define φ(u1, u2) := (w1(u1), w2(u2)), where

w1(x) :=

∫ x

0

√
g11(t, u2) dt,

w2(y) :=

∫ y

0

√
g22(u1, t) dt.

Notice that because of (ii) w1 and w2 are independent from the choice of u2

and u1, respectively. Then

dφ =

(√
g11 0
0

√
g22

)
.

Hence φ and dφ are injective and φ is a diffeomorphism onto its image Ũ :=
φ(U). Now,

(dφ)−1 =

(
1√
g11

0

0 1√
g22

)
and hence

g̃ij = g̃(ei, ej) = g
(
dφ−1(ei), dφ

−1(ej)
)

= g

(
1
√
gii
ei,

1
√
gjj
ej

)
=

gij√
gii
√
gjj
,

so g̃11 = g̃22 = 1 and g̃12 = 〈f1,f2〉
|f1||f2| = cosω.

2. Isoperimetric problem on a Cartan-Hadamard surface

Let f : R2 → R3 be a parametrized surface, such that f is a homeomorphism
between R2 and M := f(R2). Assume that f has nonnegative Gauss curva-
ture K. Given Ω ⊂M bounded, we say that ∂Ω is C2 if it consists of a finite
disjoint union of C2 simple closed curves. For such Ω define the isoperimetric
quotient

I(Ω) :=
length(∂Ω)

area(Ω)
1
2

a) Suppose first that M is isometric to the Euclidean plane. Show that if
Ω0 is a minimizer of I (such that ∂Ω0 is C2) then

I(Ω0) =
√

4π and Ω0 is an Euclidean disc.

Hint: Show that, by minimality, ∂Ω0 must consist of only one closed
simple curve γ, and prove (using the first variation of arc length) that
the geodesic curvature κg of γ must be constant. Deduce that γ must
trace a circle in R2.
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b) For general K ≤ 0, show that if Ω0 is a minimizer of I (with ∂Ω0 of
class C2) then it must be K ≡ 0 in Ω0.

Hint: Using Ωr = f(Br(0)), with r → 0+ as competitors, show that
I(Ω0) ≤

√
4π. Show that, as in a), ∂Ω0 must consist of only one closed

simple curve γ. Let ν be the inwards unit normal to ∂Ω0, define (for
ε small) γε(t) := γ(t) + εν(t), and let Ωε be the bounded connected
component of M \ image(γε). Show that d

dε

∣∣
ε=0

I(Ωε) ≤ 0, and < 0
unless K ≡ 0 in Ω0.

Solution. a) We can assume without loss of generality M = R2, since the
isoperimetric problem is intrinsic. Note that if Ω0 has multiple components
each is a closed simple curve. Hence, the image of each of these curves it di-
vides R2 into two connected components (one bounded and one unbounded).
Now, the union of (the closures of) the bounded components is a new set
which contains Ω0 and whose boundary is contained in ∂Ω0. Hence, this set
obtained by “filling the holes” it would have more area and less perimeter,
contradicting the fact that Ω0 minimizes I.

Let γ : (0, L) → R2 be a curve tracing ∂Ω0, parametrized by the arc
length, and let ν : [0, L] → S1 be the inwards unit normal. Given ξ ∈
C2

closed([a, b]) define γε(t) := γ(t)+εξ(t)ν(t) and let Ωε be the bounded connec-
ted component of R2 \ image(γε). If

∫ L

0
ξ(t) = 0 then d

dε

∣∣
ε=0

area(Ωε) = 0.
Hence be minimality it must be d

dε

∣∣
ε=0

length(Ωε) =
∫ L

0
κg(t)ξ(t)dt = 0. Since

ξ is an arbitrary average zero smooth function we deduce that κg ≡ κ =
constant or equivalently c′′ ≡ κν. This easily implies that c traces a circle
with radius 1/κ.

b) Reparametrize f(R2) as f̃(x) = f(Ax), where A is a matrix with
nonzero determinant, so that g0 = Id, so |gx − Id| ≤ Cr for |x| < r. Then,
area(f̃(Br(0))) = r2(1 + O(r)) and length(∂Br) = 2πr(1 + O(r)). It follows
that

I(f̃(Br(0)) =
√

4π + o(1) as r ↓ 0.

Since by assumption Ω0 is a minimizer of I it must be I(Ω0) ≤ I(f̃(Br(0))
for all r > 0 and hence I(Ω0) ≤

√
4π.

As in a) —now using that M is homeomophic to R2—, ∂Ω0 must consist
of only one simple closed curve f ◦γ. Let us take γ oriented counterclockwise
and let ν be the inwards unit normal to ∂Ω0 (as in the Gauss-Bonet setting).
Define (for ε small) γε(t) := γ(t)+εν(t), and let Ωε be the bounded connected
component of M \ image(γε). Let us show that show that d

dε

∣∣
ε=0
I(Ωε) ≤ 0,

and < 0 unless K ≡ 0 in Ω0.
Indeed, on the one hand d

dε

∣∣
ε=0

area(Ωε) = −length(∂Ω0). On the other
hand, d

dε

∣∣
ε=0

length(Ωε) = −
∫
∂Ω0

κgds
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Now, using Gauss-Bonnet,
∫
∂Ω0

κgds = 2π −
∫

Ω0
KdA ≥ 2π (>2π unless

K ≡ 0). Hence,

d
dε

∣∣
ε=0
I(Ωε) =

d
dε

∣∣
ε=0

length(∂Ωε)

area(Ω0)
1
2

− 1

2

length(∂Ω0) d
dε

∣∣
ε=0

area(Ωε)

area(Ω0)
3
2

≤ (<)− 2π

area(Ω0)
1
2

+
1

2

length(∂Ω0)2

area(Ω0)
3
2

= − 2π

area(Ω0)
1
2

+
1

2

I(∂Ω0)2

area(Ω0)
1
2

≤ 0,

since I(Ω0)2 ≤ 4π. This contradicts the minimality of Ω0 unless the second
inequality is an equality, which implies that K ≡ 0 in Ω0.

3. The Brouwer Fixed Point Theorem

The Brouwer fixed point theorem states:

Theorem. Let D := {x ∈ Rn : |x| ≤ 1} be the unit ball. Then every
continuous map f : D → D has a fixed point.

a) LetM ⊂ R3 be a surface and D̃ ⊂M a region diffeomorphic to the disc
D := {x ∈ R2 : |x| ≤ 1}. Consider a tangent vector field X : D̃ → R3

which on ∂D̃ is pointing outward. Show that X has zeros in the interior
of D̃.

b) Prove the Brouwer fixed point theorem in two dimensions using part
a).

Solution. a) It suffices to prove the statement for X : D → R2.
We want to use Poincaré index theorem, but for that we must have a

compact surface without boundary.
First we can modify X such that on ∂D it points radially towards the

exterior. Then we consider Y : D → R2, Y := −X, which is a vector field on
D pointing radially towards the interior on every point of ∂D.

Now identify D with an hemisphere of S2, then we can glue two hemis-
phere together along their boundaries to obtain S2. By considering the vector
field X on one hemisphere and Y on the other we obtain a continuous vector
field Z : S2 → R3, which is nowhere vanishing on the equator. As seen in
class, the Poincaré index theorem implies that Z must have a zero, but since
there are non on the equator we conclude that X or −X (and hence X) must
have at least one singularity in the interior of D.
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b) Let f : D → D be a continuous map. We define the vector field
X : D → R2 by X(x) := x− f(x). For x ∈ ∂D it holds

〈X(x), x〉 = 〈x, x〉 − 〈f(x), x〉 ≥ 1− |x||f(x)| ≥ 0.

This shows that if X doesn’t vanish on ∂D, then it points outward every-
where. In this case it follows from a) that it has a zero in the interior of D.
In both cases there is x0 with X(x0) = 0, that is f(x0) = x0.
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