Prof. Dr. Joaquim Serra

Solutions 9

1. Embeddings

a) Find an embedding $S^{k} \times \mathbb{R}^{l} \hookrightarrow \mathbb{R}^{k+l}$, where $k, l \geq 1$.
b) Prove that if the m-dimensional manifold M is a product of spheres, then there is an embedding $M \hookrightarrow \mathbb{R}^{m+1}$.

Solution. a) We consider first the case $l=1$. Define $\iota: S^{k} \times \mathbb{R} \hookrightarrow \mathbb{R}^{k+1}$, $(x, t) \mapsto x e^{t}$. It's a homeomorphism onto its image. We claim that it's an embedding.

A smooth atlas on $S^{k} \subset \mathbb{R}^{k+1}$ can be constructed using the $2 k+2$ open hemispheres that cover the sphere in the following way: for $i=1, \ldots, k+1$ let

$$
\begin{aligned}
& U_{i}^{+}:=\left\{p \in S^{k}: x^{i}>0\right\} \\
& U_{i}^{-}:=\left\{p \in S^{k}: \quad x^{i}<0\right\}
\end{aligned}
$$

and define $\varphi_{i}^{ \pm}: U_{i}^{ \pm} \rightarrow U_{0}(1) \subset \mathbb{R}^{k}$ by

$$
\varphi_{i}^{ \pm}\left(x^{1}, \ldots, x^{k+1}\right):=\left(x^{1}, \ldots, \widehat{x^{i}}, \ldots, x^{k+1}\right)
$$

where $U_{0}(1)$ denotes the open unit ball and $\widehat{x^{i}}$ means that that coordinate is omitted.

For example, given $\left(x^{2}, \ldots, x^{k+1}\right) \in \varphi_{1}^{+}\left(U_{1}^{+}\right)$, the inverse is given by

$$
\left(\varphi_{1}^{+}\right)^{-1}\left(x^{2}, \ldots, x^{k+1}\right)=\left(\sqrt{1-\sum_{i=2}^{k+1}\left(x^{i}\right)^{2}}, x^{2}, \ldots, x^{k+1}\right)
$$

Notice that $x^{i} \neq 0$ implies that $\sum_{j \neq i}\left(x^{j}\right)^{2}<1$, and that $\sqrt{ } \cdot$ is smooth on $\mathbb{R}_{>0}$.

We endow $S^{k} \times \mathbb{R}$ with the product atlas $\left\{\left(\varphi_{i}^{ \pm} \times \operatorname{id}_{\mathbb{R}}, U_{i}^{ \pm} \times \mathbb{R}\right)\right\}_{i}$, then it's a computation to show that ι is smooth. For $\left(x_{0}, t_{0}\right) \in S^{k} \times \mathbb{R}$ and φ a chart at $\left(x_{0}, t_{0}\right)$, the injectivity of $d \iota_{x_{0}, t_{0}}$ follows from the injectivity of $d\left(\iota \circ \varphi^{-1}\right)_{\varphi\left(x_{0}, t_{0}\right)}$ as

$$
d \iota_{\left(x_{0}, t_{0}\right)}=\left(d \operatorname{id}_{\iota\left(x_{0}, t_{0}\right)}\right)^{-1} \circ d\left(\iota \circ \varphi^{-1}\right)_{\varphi\left(x_{0}, t_{0}\right)} \circ d \varphi_{x_{0}, t_{0}}
$$

and $d \varphi_{x_{0}, t_{0}}, d \mathrm{id}_{\iota\left(x_{0}, t_{0}\right)}$ are linear isomorphisms.
In general $f: S^{k} \times \mathbb{R}^{l} \hookrightarrow \mathbb{R}^{k+l},\left(x, t_{1}, \ldots t_{l}\right) \mapsto\left(\iota\left(x, t_{1}\right), t_{2} \ldots, t_{l}\right)$ is an immersion.
b) We proceed by induction on the number of spheres n which form M. The inclusion of the sphere $S^{m} \subset \mathbb{R}^{m+1}$ is an immersion.

Now let $n \geq 2$ and suppose that $M:=\prod_{i=1}^{n} S^{m_{i}}$ and $m:=\sum_{i=1}^{n} m_{i}$. The induction hypothesis gives an embedding $g: \prod_{i=2}^{n} S^{m_{i}} \hookrightarrow \mathbb{R}^{m-m_{1}+1}$ and from a) there is and embedding $f: S^{m_{1}} \times \mathbb{R}^{m-m_{1}+1} \hookrightarrow \mathbb{R}^{m+1}$. As products and compositions of embeddings are embeddings, the map

$$
\begin{aligned}
h:=f \circ\left(\operatorname{id}_{S^{m_{1}}} \times g\right): M & \hookrightarrow \mathbb{R}^{m+1} \\
\left(x_{1}, \ldots x_{n}\right) & \mapsto f\left(x_{1}, g\left(x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

is also an embedding.

2. The Complex Projective Space

Consider the following equivalence relation on the complex vector space \mathbb{C}^{n+1} :

$$
x \sim y \quad \Longleftrightarrow \quad x=\lambda y \text { for some } \lambda \in \mathbb{C} \backslash\{0\} .
$$

The quotient space $\mathbb{C P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim$, equipped with the quotient topology, is called complex projective space.
a) Find a differentiable structure on the topological space $\mathbb{C P}^{n}$ such that the canonical projection

$$
\pi: \mathbb{C}^{n+1} \backslash\{0\} \longrightarrow \mathbb{C P}^{n}
$$

is a differentiable map.
b) Prove that S^{2} and $\mathbb{C P}^{1}$ are diffeomorphic.

Solution. a) We use homogeneous coordinates $\left[z_{0}: \ldots: z_{n}\right]$ on $\mathbb{C P}^{n}$. Define an atlas $\mathcal{A}:=\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i=0}^{n}$ by

$$
\left.U_{i}:=\left\{\left[z_{0}: \ldots: z_{n}\right] \in \mathbb{C P}^{n}: z_{i} \neq 0\right]\right\}
$$

and $\phi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$ with

$$
\phi_{i}\left(\left[z_{0}: \ldots: z_{n}\right]\right):=\frac{1}{z_{i}}\left(z_{0}, \ldots z_{i-1}, z_{i+1}, \ldots, z_{n}\right) .
$$

The sets U_{i} 's are open and $\mathbb{C P}^{n}=\bigcup_{i=0}^{n} U_{i}$. Moreover the ϕ_{i} 's are homeomorphisms with

$$
\phi_{i}^{-1}\left(z_{1}, \ldots, z_{n}\right)=\left[z_{1}: \ldots z_{i}: 1: z_{i+1}: \ldots z_{n}\right] .
$$

Prof. Dr. Joaquim Serra
The change of coordinates for $U_{i} \cap U_{j}$ is given by

$$
\phi_{i} \circ \phi_{j}^{-1}\left(z_{1}, \ldots z_{n}\right)=\left(\frac{z_{1}}{z_{i}}, \ldots, \frac{z_{j}}{z_{i}}, \frac{1}{z_{i}}, \frac{z_{j+1}}{z_{i}}, \ldots, \frac{z_{i-1}}{z_{i}}, \frac{z_{i+1}}{z_{i}}, \ldots, \frac{z_{n}}{z_{i}}\right),
$$

which is smooth. Hence the atlas \mathcal{A} defines a C^{∞}-structure on $\mathbb{C P}^{n}$.
For the projection it holds that

$$
\phi_{i} \circ \pi\left(z_{0}, \ldots, z_{n}\right)=\frac{1}{z_{i}}\left(z_{0}, \ldots z_{i-1}, z_{i+1}, \ldots, z_{n}\right),
$$

whenever $\pi\left(z_{0}, \ldots, z_{n}\right) \in U_{i}$, and therefore $\pi \in C^{\infty}$.

Prof. Dr. Joaquim Serra
b) On S^{2} we consider the (surjective) stereographic charts

$$
\begin{array}{rlrl}
\phi_{N}: S^{2} \backslash\{N\} & \rightarrow \mathbb{R}^{2}, & \phi_{N}(x, y, z) & =\left(\frac{x}{1-z}, \frac{y}{1-z}\right) \\
\phi_{S}: S^{2} \backslash\{S\} \rightarrow \mathbb{R}^{2}, & \phi_{S}(x, y, z) & =\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
\end{array}
$$

Notice that

$$
\phi_{N}^{-1}(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) .
$$

If we consider $S^{2} \subset \mathbb{C} \times \mathbb{R}$, then for $z, w \in \mathbb{C}$ and $t \in \mathbb{R}$ we can write

$$
\phi_{N}^{-1}(z)=\left(\frac{2 z}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)
$$

and

$$
\phi_{S}(w, t)=\frac{w}{1+t} .
$$

Define $\Phi: \mathbb{C P}^{1} \rightarrow S^{2}$ by

$$
\Phi\left(\left[z_{0}: z_{1}\right]\right):= \begin{cases}\phi_{N}^{-1}\left(\frac{z_{0}}{z_{1}}\right), & \text { if } z_{1} \neq 0 \\ N, & \text { if } z_{1}=0\end{cases}
$$

Notice that Φ is a homeomorphism, moreover $\Phi\left(U_{1}\right)=S^{2} \backslash\{N\}$ and $\Phi\left(U_{0}\right)=$ $S^{2} \backslash\{S\}$. Hence we just need to check the two local expressions

$$
\phi_{N} \circ \Phi \circ \varphi_{1}^{-1}, \quad \phi_{S} \circ \Phi \circ \phi_{0}^{-1}
$$

In the first case

$$
\phi_{N} \circ \Phi \circ \phi_{1}^{-1}(z)=\phi_{N} \circ \Phi([z: 1])=\phi_{N} \circ \phi_{N}^{-1}(z)=z,
$$

which is smooth with smooth inverse. In the second case $\phi_{S} \circ \Phi \circ \phi_{0}^{-1}(z)=$ $\phi_{S} \circ \Phi([1: z])$.

If $z \neq 0$, then

$$
\begin{aligned}
\phi_{S} \circ \Phi([1: z]) & =\phi_{S} \circ \phi_{N}^{-1}\left(\frac{1}{z}\right) \\
& =\phi_{S}\left(\frac{2 \frac{1}{z}}{|z|^{-2}+1}, \frac{|z|^{-2}-1}{|z|^{-2}+1}\right) \\
& =\phi_{S}\left(\frac{2 \bar{z}}{1+|z|^{2}}, \frac{1-|z|^{2}}{1+|z|^{2}}\right) \\
& =\bar{z} .
\end{aligned}
$$

If $z=0$, then $\phi_{S} \circ \Phi([1: 0])=\phi_{S}(N)=0=\bar{z}$. In both cases $\phi_{S} \circ \Phi \circ \phi_{0}^{-1}(z)=$ \bar{z}, which is smooth with smooth inverse.

Prof. Dr. Joaquim Serra

3. Hopf Fibration

Let $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ be the canonical projection from Exercise 2. The Hopf fibration

$$
H: S^{2 n+1} \rightarrow \mathbb{C P}^{n}
$$

is given by the restriction of π to $S^{2 n+1} \subset \mathbb{C}^{n+1} \backslash\{0\}$
a) Let $n=1$. Describe the fibers of H over a point $x \in \mathbb{C P}^{1}$, that is, $H^{-1}(x)$.
b) Prove that $H: S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ is a submersion.

Solution. a) For $z, z^{\prime} \in H^{-1}(x)$ we have

$$
H(z)=H\left(z^{\prime}\right) \Leftrightarrow z \sim z^{\prime} \Leftrightarrow \exists \lambda \in \mathbb{C}: z=\lambda z^{\prime} .
$$

Since $z, z^{\prime} \in S^{3}$, it follows that $|\lambda|=|\lambda|\left|z^{\prime}\right|=|z|=1$. Thus

$$
H^{-1}(x)=\left\{\lambda z: \lambda \in S^{1}\right\} \cong S^{1}
$$

b) It suffices to check the surjectivity of $d H_{p}$ for $p=(1,0, \ldots, 0)$. For $i=1, \ldots, n$ and $\lambda \in S^{1} \subset \mathbb{C}$ define $\gamma_{i}:(-\epsilon, \epsilon) \rightarrow S^{2 n+1}$ by

$$
\gamma_{i}(t):=(\cos t, 0, \ldots, 0, \lambda \sin t, 0, \ldots, 0) \in S^{2 n+1} \subset \mathbb{C}^{n+1}
$$

(that is $\left.z_{0}=\cos t, z_{i}=\lambda \sin t\right)$. Then
$\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{0} \circ H \circ \gamma_{i}\right)(t)=\left.\frac{d}{d t}\right|_{t=0}\left(0, \ldots, 0, \lambda \frac{\sin t}{\cos t}, 0, \ldots, 0\right)=\left.\frac{\lambda}{\cos ^{2} t}\right|_{t=0} \cdot e_{i}=\lambda \cdot e_{i}$.
So we conclude that $d\left(\phi_{0} \circ H\right)_{p}\left(T S_{p}^{2 n+1}\right)=\mathbb{C}^{n}=d\left(\phi_{0}\right)_{H(p)}\left(T M_{H(p)}\right)$ and therefore $d H_{p}$ is surjective.

