Single Choice Questions

SC1 Let M be the (genus 2) surface in the figure.

Then $\int_M K \, dA$ equals:

- (A) 4π .
- (B) 0.
- (C) -2π .
- (D) -4π .
- (E) -8π .

SC2 Let M be the same surface as in question SC1. If $N: M \longrightarrow \mathbb{S}^2$ is the Gauss map, then $\deg_2 N$, i.e. the mapping degree mod 2, equals

- (A) 0.
- (B) 1.
- (C) depends on whether N is pointing inwards or outwards.
- (D) 1 at points of positive Gauss curvature, 0 otherwise.
- (E) 0 at points of positive Gauss curvature, 1 otherwise.
- **SC3** Consider the following (graphical) submanifolds of \mathbb{R}^3 , parametrized by $f: (x, y) \mapsto (x, y, z(x, y))$, where z = z(x, y) is given by

(I)
$$z = x^2 + y^2$$
 (II) $z = x^2 - y^2$ (III) $z = x^4 - y^2$

(IV)
$$z = x^2 - \sin^2 y$$
 (V) $z = y^2 + (x+y)^3$

The following is true.

- (A) (I) and (V) have positive Gauss curvature at (0,0).
- (B) (II), (III), and (IV) have negative Gauss curvature at (0,0).
- (C) (III) and (V) have zero Gauss curvature at (0,0).
- (D) (II) is the only one with negative Gauss curvature at (0,0).
- (E) (V) has positive Gauss curvature at (0, 0).

ETH zürich

- **SC4** Suppose $\Omega \subset \mathbb{R}^3$ is an open subset such that $\partial \Omega$ (the topological boundary) is a smooth compact submanifold satisfying $\int_{\partial \Omega} |K| \, dA = 4\pi$. Then
 - (A) Ω must be convex.
 - (B) Ω must be a ball.
 - (C) Ω must be a union of disjoint balls.
 - (D) Ω must have constant mean curvature.
 - (E) the mean curvature of Ω must vanish at one point, at least.

 ${\bf SC5}\,$ Consider the torus of revolution as in the figure.

Let Ω be the set of points with positive Gauss curvature. The area of Ω is:

- (A) $2\pi^2 ab$.
- (B) $2\pi^2 ab + 4\pi a^2$.
- (C) $4\pi ab$.
- (D) $2\pi(a^2+b^2)$.
- (E) $\pi^2 a^2 + \pi a b$.

SC6 For Ω as in question SC5, the integral $\int_{\Omega} K dA$ equals:

(A)
$$4\pi$$
.
(B) $\pi^2 \frac{b-a}{a+b}$.
(C) $\frac{8\pi ba}{a^2+b^2}$.
(D) $2\pi \left(1 + \frac{2ab}{a^2+b^2}\right)$.
(E) $4\pi \frac{a^2}{a^2+b^2}$.

Problem 1 The sphere revisited

Consider the parametrization f given by the inverse of the stereographic projection $\mathbb{S}^2 \setminus \{(0,0,1)\} \longrightarrow \mathbb{R}^2$ from the North pole. Explicitly, $f \colon \mathbb{R}^2 \longrightarrow \mathbb{S}^2 \setminus \{(0,0,1)\}$ is given by

$f\colon (x,y)\longmapsto \Big(\frac{2x}{1+x^2+y^2},\frac{2y}{1+x^2+y^2},\frac{x^2+y^2-1}{1+x^2+y^2}\Big).$

(a) Compute the first fundamental form of f. Is f conformal?

Consider \mathbb{R}^2 , the domain of the parametrization f. The *metric distance* between two points (x, y) and (x', y') is defined as

$$\inf \left\{ L(\gamma) \mid \gamma \colon [0,1] \to \mathbb{R}^2 \text{ piecewise smooth curve with } \gamma(0) = (x,y), \gamma(1) = (x',y') \right\},$$

where the length L of the curve γ is defined as $L(\gamma) \coloneqq \int_0^1 \sqrt{g_{\gamma(t)}(\gamma'(t), \gamma'(t))} dt$, and g is the first fundamental form of the parametrization f.

(b) Show that for any parallel, represented on \mathbb{R}^2 by a circle $x^2 + y^2 = r^2$ for some r > 0, the *metric* distance between (0,0) and any of its points (x_0, y_0) , depends only on r and is attained by the curve $s \longmapsto s(x_0, y_0)$, defined for $s \in [0, 1]$.

Hint: For
$$a \in \mathbb{R}$$
, $\int \frac{1}{a^2+s^2} ds = \frac{1}{a} \arctan(\frac{s}{a}) + c$.

(c) Prove that the distance between any two points on the sphere (which are not antipodal) is attained by the great circular arc joining them.

Hint: you can either deduce it using (b) or give another proof, e.g. the one that was given in the first lecture.

Problem 2

Local isothermal coordinates on a minimal surface

- (a) Suppose that U is a ball in the (x, y)-plane \mathbb{R}^2 . Show that, given smooth functions $A, B: U \longrightarrow \mathbb{R}$, the equations $\frac{\partial}{\partial x} \Phi = A$, $\frac{\partial}{\partial y} \Phi = B$ admit a solution Φ if and only if $\frac{\partial}{\partial y} A = \frac{\partial}{\partial x} B$ holds.
- (b) Let $U \subset \mathbb{R}^2$ be a ball and let $v: U \longrightarrow \mathbb{R}$ be such that $f: U \longrightarrow \mathbb{R}^3$,

$$f(x,y) \coloneqq (x,y,v(x,y))$$

is a minimal immersion (i.e. the mean curvature or the trace of the Weingarten map vanish for all (x, y)). Show that v must satisfy the PDE

$$\frac{\partial}{\partial x} \left(\frac{v_x}{W} \right) + \frac{\partial}{\partial y} \left(\frac{v_y}{W} \right) = 0, \qquad (\circledast)$$

where $W = W(x, y) \coloneqq \sqrt{1 + v_x^2 + v_y^2}$, and where the subindexes x and y denote partial derivatives.

(c) Show that equation (*) from part (b) implies

$$\frac{\partial}{\partial x} \left(\frac{1 + v_y^2}{W} \right) = \frac{\partial}{\partial y} \left(\frac{v_x v_y}{W} \right),$$

and deduce the existence of a potential Φ for the vector field $(\frac{v_x v_y}{W}, \frac{1+v_y^2}{W})$, that is, a function $\Phi: U \longrightarrow \mathbb{R}$ such that

$$\frac{\partial}{\partial x}\Phi = \frac{v_x v_y}{W} \qquad \qquad \frac{\partial}{\partial y}\Phi = \frac{1 + v_y^2}{W}.$$

(d) Introduce new coordinates $\bar{x} = x$, $\bar{y} = \Phi(x, y)$ and check that the first fundamental form with respect to the new coordinates is of the form

$$\bar{g}_{(\bar{x},\bar{y})} = \lambda(\bar{x},\bar{y}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Compute the conformal factor $\lambda(\bar{x}, \bar{y})$.

Hint: put $(\bar{x}, \bar{y}) = \Psi(x, y) \coloneqq (x, \Phi(x, y))$ and compute the first fundamental form of the parametrization $f \circ \Psi^{-1}$: $\Psi(U) \longrightarrow f(U), \ (\bar{x}, \bar{y}) \longmapsto f(\Psi^{-1}(\bar{x}, \bar{y})),$ using the chain rule.

(e) Write the statement and proof of a theorem given in the lecture concerning the harmonicity of the coordinate functions for an isothermal parametrization of a minimal surface.