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Exam Problems HS21

1. The Catenoid

Consider the following parametrization of a “cylindrical” surface of revolution
in R3:

Sf := {x ∈ R3 |
√

(x1)2 + (x2)2 = f(x3), |x3| ≤ 1},

where f : [−1, 1] → (0,∞) is smooth. Notice that ∂Sf is the union of two
circumferences.

(a) Show that the area of Sf is given by 2π
∫ 1

−1 f(t)
√

1 + f ′(t)2 dt.

(b) Prove that if Sf has minimal area among all cylindrical surfaces as
above with the same boundary, then f must satisfy:

(i) ff ′′ = 1 + (f ′)2,

(ii)
(

f√
1+(f ′)2

)′
= 0.

(c) Show that solutions of (ii) must be of the form f(t) = a cosh( t−b
a

) for
some b ∈ R and a > 0.
[Hint: Use

∫
dy√
y2−a2

= cosh−1(y
a
) + constant.]

(d) Prove that
∫
Sf
K dA = −2π

∫ f ′(1)
f ′(−1)

dz
(1+z2)3/2

.

2. Lie Bracket and Curvature

Let X be a C∞ vector field on an open set U ⊂ Rn. By the identification of
vector fields and derivations, X acts on C∞ functions:

Xf =
n∑
j=1

Xj ∂

∂xj
f for f ∈ C∞(U),

where X i are the components1 of X. Similarly, if Y is a another C∞ vector
field on U , we let X act on Y component-wise. That is, we denote XY the
vector field with components

(XY )i := XY i =
n∑
j=1

Xj ∂

∂xj
Y i.

1That is, X =
∑n

i=1 X
i ∂
∂xi in the derivation point of view, or simply X(p) =

(X1(p), X2(p), . . . , Xn(p)) ∈ Rn ∼= TUp for all p ∈ Rn.
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Given two smooth vector fieldsX, Y as above, define their Lie bracket [X, Y ] :=
Z as the map Z : C∞(U)→ C∞(U) defined by

Zf := X(Y f)− Y (Xf).

(a) Show that Zf can be written as
∑
Zi ∂

∂xi
f and compute Zi in terms of

the X i’s and Y i’s. Deduce that Z is a smooth vector field on U .

(b) Prove [X, Y ] = XY − Y X.

(c) Let ψ : U → V be a C∞ diffeomorphism. Define the push-forward of a
vector field T on U , denoted ψ∗T , as

ψ∗(T )(q) := dψψ−1(q)T (ψ−1(q)),

for q ∈ V . Prove that [ψ∗(X), ψ∗(Y )] = ψ∗([X, Y ]).
[Hint: Use that for all smooth f : V → R, and vector field T on U we
have (ψ∗(T )f) ◦ ψ = T (f ◦ ψ).]

(d) Show that if M ⊂ R3 is an embedded surface, and X, Y are tangent
vector fields onM , then the Lie bracket [X, Y ] is well-defined as [X̃, Ỹ ],
where X̃, Ỹ are extensions of X, Y to an open set U ⊂ R3 containing
M . Prove that [X, Y ] is also tangent to M .
[Hint: You may assume that such extensions always exists. Also, if
ψ : W → V is a diffeomorphism between open subsets of R3, then T is
tangent to M ∩W if and only if ψ∗(T ) is tangent to ψ(M ∩W ) ⊂ V .]

(e) With M as above, show that if X, Y are tangent vector fields such that
X(p), Y (p) is an orthonormal basis of TMp for all p ∈M , then

〈DXDYX −DYDXX −D[X,Y ]X, Y 〉 = −K,

where D denotes the covariant derivative andK is the Gauss curvature.
[Hint: Denoting ν the unit normal to M , recall that

K = 〈XX, ν〉〈Y Y, ν〉 − 〈Y X, ν〉〈XY, ν〉.

Using the previous expression for K, and that X, Y, ν are orthonormal,
prove −K = 〈Y (〈XX, ν〉ν)−X(〈Y X, ν〉ν), Y 〉.
Also, recall the definition of covariant derivative DZT = ZT−〈ZT, ν〉ν
for any tangent vector fields Z, T .]
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3. Sard’s Lemma and Whitney’s Embedding Theorem

LetM be a compact m-dimensional C∞ manifold. Recall that there exists an
embedding F : M → Rn for a (possibly very large) n depending onM (Theo-
rem 8.9 in the lecture). The goal of this problem is to lower the dimension n
to 2m+ 1.

(a) Let M̃ ⊂ Rn be a compact m-dimensional C∞ submanifold. Prove that

UTM̃ :=
{

(x, ξ) ∈ Rn × Rn : x ∈ M̃, ξ ∈ TM̃x, |ξ| = 1
}

is a (2m− 1)-dimensional compact C∞ submanifold of R2n.
[Hint: Using a submanifold chart (ψ,U) notice that M̃ ∩ U can be
written as {x ∈ U : ψm+1(x) = · · · = ψn(x) = 0}. Try to write UTM̃
locally as the zero set of a certain map G : Rn×Rn → R2n−2m+1 having
0 as a regular value.]

(b) Given e ∈ Sn−1 define

e⊥ := {x ∈ Rn : e · x = 0} ∼= Rn−1,

and let πe : Rn → e⊥ be the orthogonal projection x 7→ x − (e · x)e.
Prove that πe|M̃ is an immersion if and only if e does not belong to the
image of the map π2|UTM̃ : UTM̃ → Sn−1, defined as the restriction of
the canonical projection π2(x, ξ) = ξ.

(c) Prove that πe|M̃ is injective if and only if ±e do not belong to the image
of the map g : (M̃ × M̃) \∆→ Sn−1, defined as

g(x, y) :=
x− y
|x− y|

,

where ∆ := {(x, x) : x ∈ M̃}.

(d) Using Sard’s Lemma, show that if n > 2m + 1, then for almost every
e ∈ Sn−1 the projection πe : M̃ → e⊥ is an injective immersion.
[Hint: Recall Sard’s Lemma. If F : Mm → Nn is a Cr map with r >
max{0, n −m}, then the set of singular values of F has measure zero
in N . ]

(e) Prove Whitney’s Embedding Theorem (compact case), namely, that
every smooth compact m-dimensional manifold can be embedded in
R2m+1.
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Differential Geometry I exam (multiple choice part)

1. The radius of the osculating circle of the curve c(t) := (at,−t2), a > 0, at the point
(0, 0) is given by:

(a) a2

2
.

(b) a
2
.

(c) 2.

(d) 1.

(e)
√
a
2

.

2. Assume that a (smooth, nonempty) compact 2-dimensional submanifold M ⊂ R3 satis-
fies

∫
M
H2 dA =

∫
M
K dA, where K is the Gauss curvature and H is the mean curvature1.

Then M must be a/an

(a) sphere.

(b) union of spheres.

(c) ellipsoid.

(d) Clifford torus.

(e) point.

3. Consider the differential 1-form ω = −ydx+ xdy in R2. Let D be the ellipsoid {(x, y) :
ax2 + 1

a
y2 ≤ 1}, where a > 0. Then

∫
∂D
ω equals:

(a) 2π.

(b) π
(
a+ 1

a

)
.

(c) e2πi.

(d) −πcos(a).

(e) 1.

1The average of the principal curvatures.
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4. Let C ⊂ R3 be the cylinder in R3, parametrized as

f(u, v) =
(
R cosu,R sinu, v3

)
,

R > 0. What are the correct values of the Gauss curvature K and mean curvature H at
the point (R, 0, 3

√
2) ∈ C (with respect to the outward pointing Gauss map)?

(a) K = 0, H = 0.

(b) K = 0, H = − 1
2R

.

(c) K = 0, H = 1
2R

+ 1.

(d) K = 2
R2 , H = 1

R
.

(e) K = 0, H = −R/2.

5. Consider a “spherical pentagon” (geodesically convex region bounded by five circular
arcs) of area A in a 2-sphere of R3 with area A′. The sum of its (five) interior angles is:

(a) π
(
3 + 4 A

A′

)
.

(b) 2π + A/A′.

(c) 3π + A.

(d) 5π + 2A/
√
A′.

(e) 5π + A/
√
A′
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6. Let M ⊂ R3 be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the
differential of the area)?

(a) −3π.

(b) 0.

(c) depends on how M is embedded in R3.

(d) −6π.

(e) −8π.

7. Which one is true?

(a) Cylinders, spheres and planes are the only connected submanifolds of R3 with con-
stant mean curvature.

(b) A smooth compact surface in R3 whose area is minimal among all surfaces enclosing
the same volume must have constant mean curvature.

(c) Any connected embedded minimal surface M ⊂ R3 with
∫
M
K dA > −8π must be a

plane.

(d) Alexandroff’s theorem classifies all constant mean curvature embedded surfaces.

(e) If a constant mean curvature surface is embedded and non-compact, then it must be
a cylinder.
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8. Consider the torus of revolution

f(x, y) =
(

cosx(−R + r cos y), sinx(−R + r cos y), r sin y
)
,

R > r > 0, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at p = (−R−r, 0, 0)
is:

(a) −1
2

(
1
r

+ 1√
R2−r2 ).

(b) −1
2

(
1√
rR

+ 1
R−r ).

(c) −1
2

(
1
r

+ 1
R+r

).

(d) −1
2

(
1
r
− 1

R+r
).

(e) −1
2

(
1
r
− 1√

R2−r2 ).

9. Consider again the torus from the previous question. At any point of the torus one
principal curvature is −1/r. The other principal curvature at the point q = (−R +
r cosα, 0, r sinα) is:

(a) cosα
R−r cosα .

(b) cosα
R−r .

(c) tanα
R−r .

(d) cosα
R−r sinα .

(e) tanα
R+r

.
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10. Consider again the torus from the previous two questions. When the point q is ro-
tated about the x3-axis, it generates the curve γ(t) = (cos t(−R + r cosα), sin t(−R +
r cosα), r sinα), which is contained in the torus. Given a tangent vector X at q consider
its parallel transport along γ for one full turn (t ∈ [0, 2π]), producing a new tangent vector
Y at q. The angle between X and Y is:

(a) αR
r

.

(b) 2π sinα.

(c) tanαR
r

.

(d) 2π cosα.

(e) sinα.
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