Exam Problems HS21

1. The Catenoid

Consider the following parametrization of a "cylindrical" surface of revolution in \mathbb{R}^{3} :

$$
S_{f}:=\left\{x \in \mathbb{R}^{3}\left|\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}=f\left(x^{3}\right),\left|x^{3}\right| \leq 1\right\},\right.
$$

where $f:[-1,1] \rightarrow(0, \infty)$ is smooth. Notice that ∂S_{f} is the union of two circumferences.
(a) Show that the area of S_{f} is given by $2 \pi \int_{-1}^{1} f(t) \sqrt{1+f^{\prime}(t)^{2}} d t$.
(b) Prove that if S_{f} has minimal area among all cylindrical surfaces as above with the same boundary, then f must satisfy:
(i) $f f^{\prime \prime}=1+\left(f^{\prime}\right)^{2}$,
(ii) $\left(\frac{f}{\sqrt{1+\left(f^{\prime}\right)^{2}}}\right)^{\prime}=0$.
(c) Show that solutions of (ii) must be of the form $f(t)=a \cosh \left(\frac{t-b}{a}\right)$ for some $b \in \mathbb{R}$ and $a>0$.
[Hint: Use $\int \frac{d y}{\sqrt{y^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{y}{a}\right)+$ constant.]
(d) Prove that $\int_{S_{f}} K d A=-2 \pi \int_{f^{\prime}(-1)}^{f^{\prime}(1)} \frac{d z}{\left(1+z^{2}\right)^{3 / 2}}$.

2. Lie Bracket and Curvature

Let X be a C^{∞} vector field on an open set $U \subset \mathbb{R}^{n}$. By the identification of vector fields and derivations, X acts on C^{∞} functions:

$$
X f=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}} f \text { for } f \in C^{\infty}(U)
$$

where X^{i} are the components ${ }^{11}$ of X. Similarly, if Y is a another C^{∞} vector field on U, we let X act on Y component-wise. That is, we denote $X Y$ the vector field with components

$$
(X Y)^{i}:=X Y^{i}=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}} Y^{i} .
$$

[^0]Prof. Dr. Joaquim Serra
Given two smooth vector fields X, Y as above, define their Lie bracket $[X, Y]:=$ Z as the map $Z: C^{\infty}(U) \rightarrow C^{\infty}(U)$ defined by

$$
Z f:=X(Y f)-Y(X f)
$$

(a) Show that $Z f$ can be written as $\sum Z^{i} \frac{\partial}{\partial x^{i}} f$ and compute Z^{i} in terms of the X^{i} 's and Y^{i},s. Deduce that Z is a smooth vector field on U.
(b) Prove $[X, Y]=X Y-Y X$.
(c) Let $\psi: U \rightarrow V$ be a C^{∞} diffeomorphism. Define the push-forward of a vector field T on U, denoted $\psi_{*} T$, as

$$
\psi_{*}(T)(q):=d \psi_{\psi^{-1}(q)} T\left(\psi^{-1}(q)\right),
$$

for $q \in V$. Prove that $\left[\psi_{*}(X), \psi_{*}(Y)\right]=\psi_{*}([X, Y])$.
[Hint: Use that for all smooth $f: V \rightarrow \mathbb{R}$, and vector field T on U we have $\left(\psi_{*}(T) f\right) \circ \psi=T(f \circ \psi)$.]
(d) Show that if $M \subset \mathbb{R}^{3}$ is an embedded surface, and X, Y are tangent vector fields on M, then the Lie bracket $[X, Y]$ is well-defined as $[\tilde{X}, \tilde{Y}]$, where \tilde{X}, \tilde{Y} are extensions of X, Y to an open set $U \subset \mathbb{R}^{3}$ containing M. Prove that $[X, Y]$ is also tangent to M.
[Hint: You may assume that such extensions always exists. Also, if $\psi: W \rightarrow V$ is a diffeomorphism between open subsets of \mathbb{R}^{3}, then T is tangent to $M \cap W$ if and only if $\psi_{*}(T)$ is tangent to $\psi(M \cap W) \subset V$.]
(e) With M as above, show that if X, Y are tangent vector fields such that $X(p), Y(p)$ is an orthonormal basis of $T M_{p}$ for all $p \in M$, then

$$
\left\langle D_{X} D_{Y} X-D_{Y} D_{X} X-D_{[X, Y]} X, Y\right\rangle=-K
$$

where D denotes the covariant derivative and K is the Gauss curvature. [Hint: Denoting ν the unit normal to M, recall that

$$
K=\langle X X, \nu\rangle\langle Y Y, \nu\rangle-\langle Y X, \nu\rangle\langle X Y, \nu\rangle .
$$

Using the previous expression for K, and that X, Y, ν are orthonormal, prove $-K=\langle Y(\langle X X, \nu\rangle \nu)-X(\langle Y X, \nu\rangle \nu), Y\rangle$.
Also, recall the definition of covariant derivative $D_{Z} T=Z T-\langle Z T, \nu\rangle \nu$ for any tangent vector fields Z, T.]

Prof. Dr. Joaquim Serra

3. Sard's Lemma and Whitney's Embedding Theorem

Let M be a compact m-dimensional C^{∞} manifold. Recall that there exists an embedding $F: M \rightarrow \mathbb{R}^{n}$ for a (possibly very large) n depending on M (Theorem 8.9 in the lecture). The goal of this problem is to lower the dimension n to $2 m+1$.
(a) Let $\tilde{M} \subset \mathbb{R}^{n}$ be a compact m-dimensional C^{∞} submanifold. Prove that

$$
\mathcal{U T} \tilde{M}:=\left\{(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \in \tilde{M}, \xi \in T \tilde{M}_{x},|\xi|=1\right\}
$$

is a $(2 m-1)$-dimensional compact C^{∞} submanifold of $\mathbb{R}_{\tilde{M}}{ }^{n}$.
[Hint: Using a submanifold chart (ψ, U) notice that $\tilde{M} \cap U$ can be written as $\left\{x \in U: \psi^{m+1}(x)=\cdots=\psi^{n}(x)=0\right\}$. Try to write $\mathcal{U} T \tilde{M}$ locally as the zero set of a certain map $G: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n-2 m+1}$ having 0 as a regular value.]
(b) Given $e \in \mathbb{S}^{n-1}$ define

$$
e^{\perp}:=\left\{x \in \mathbb{R}^{n}: e \cdot x=0\right\} \cong \mathbb{R}^{n-1},
$$

and let $\pi_{e}: \mathbb{R}^{n} \rightarrow e^{\perp}$ be the orthogonal projection $x \mapsto x-(e \cdot x) e$. Prove that $\left.\pi_{e}\right|_{\tilde{M}}$ is an immersion if and only if e does not belong to the image of the map $\left.\pi_{2}\right|_{\mathcal{U} T \tilde{M}}: \mathcal{U} T \tilde{M} \rightarrow \mathbb{S}^{n-1}$, defined as the restriction of the canonical projection $\pi_{2}(x, \xi)=\xi$.
(c) Prove that $\left.\pi_{e}\right|_{\tilde{M}} \underset{\sim}{\text { is }}$ injective if and only if $\pm e$ do not belong to the image of the map $g:(\tilde{M} \times \tilde{M}) \backslash \Delta \rightarrow \mathbb{S}^{n-1}$, defined as

$$
g(x, y):=\frac{x-y}{|x-y|},
$$

where $\Delta:=\{(x, x): x \in \tilde{M}\}$.
(d) Using Sard's Lemma, show that if $n>2 m+1$, then for almost every $e \in \mathbb{S}^{n-1}$ the projection $\pi_{e}: \tilde{M} \rightarrow e^{\perp}$ is an injective immersion.
[Hint: Recall Sard's Lemma. If $F: M^{m} \rightarrow N^{n}$ is a C^{r} map with $r>$ $\max \{0, n-m\}$, then the set of singular values of F has measure zero in N.]
(e) Prove Whitney's Embedding Theorem (compact case), namely, that every smooth compact m-dimensional manifold can be embedded in $\mathbb{R}^{2 m+1}$.

Differential Geometry I exam (multiple choice part)

1. The radius of the osculating circle of the curve $c(t):=\left(a t,-t^{2}\right), a>0$, at the point $(0,0)$ is given by:
(a) $\frac{a^{2}}{2}$.
(b) $\frac{a}{2}$.
(c) 2 .
(d) 1 .
(e) $\frac{\sqrt{a}}{2}$.
2. Assume that a (smooth, nonempty) compact 2-dimensional submanifold $M \subset \mathbb{R}^{3}$ satisfies $\int_{M} H^{2} d A=\int_{M} K d A$, where K is the Gauss curvature and H is the mean curvature ${ }^{1}$. Then M must be a/an
(a) sphere.
(b) union of spheres.
(c) ellipsoid.
(d) Clifford torus.
(e) point.
3. Consider the differential 1-form $\omega=-y d x+x d y$ in \mathbb{R}^{2}. Let D be the ellipsoid $\{(x, y)$: $\left.a x^{2}+\frac{1}{a} y^{2} \leq 1\right\}$, where $a>0$. Then $\int_{\partial D} \omega$ equals:
(a) 2π.
(b) $\pi\left(a+\frac{1}{a}\right)$.
(c) $e^{2 \pi i}$.
(d) $-\pi \cos (a)$.
(e) 1 .

[^1]4. Let $C \subset \mathbb{R}^{3}$ be the cylinder in \mathbb{R}^{3}, parametrized as
$$
f(u, v)=\left(R \cos u, R \sin u, v^{3}\right)
$$
$R>0$. What are the correct values of the Gauss curvature K and mean curvature H at the point $(R, 0, \sqrt[3]{2}) \in C$ (with respect to the outward pointing Gauss map)?
(a) $K=0, H=0$.
(b) $K=0, H=-\frac{1}{2 R}$.
(c) $K=0, H=\frac{1}{2 R}+1$.
(d) $K=\frac{2}{R^{2}}, H=\frac{1}{R}$.
(e) $K=0, H=-R / 2$.
5. Consider a "spherical pentagon" (geodesically convex region bounded by five circular arcs) of area A in a 2 -sphere of \mathbb{R}^{3} with area A^{\prime}. The sum of its (five) interior angles is:
(a) $\pi\left(3+4 \frac{A}{A^{\prime}}\right)$.
(b) $2 \pi+A / A^{\prime}$.
(c) $3 \pi+A$.
(d) $5 \pi+2 A / \sqrt{A^{\prime}}$.
(e) $5 \pi+A / \sqrt{A^{\prime}}$

D-MATH
6. Let $M \subset \mathbb{R}^{3}$ be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the differential of the area)?
(a) -3π.
(b) 0 .
(c) depends on how M is embedded in \mathbb{R}^{3}.
(d) -6π.
(e) -8π.
7. Which one is true?
(a) Cylinders, spheres and planes are the only connected submanifolds of \mathbb{R}^{3} with constant mean curvature.
(b) A smooth compact surface in \mathbb{R}^{3} whose area is minimal among all surfaces enclosing the same volume must have constant mean curvature.
(c) Any connected embedded minimal surface $M \subset \mathbb{R}^{3}$ with $\int_{M} K d A>-8 \pi$ must be a plane.
(d) Alexandroff's theorem classifies all constant mean curvature embedded surfaces.
(e) If a constant mean curvature surface is embedded and non-compact, then it must be a cylinder.
8. Consider the torus of revolution

$$
f(x, y)=(\cos x(-R+r \cos y), \sin x(-R+r \cos y), r \sin y),
$$

$R>r>0$, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at $p=(-R-r, 0,0)$ is:
(a) $-\frac{1}{2}\left(\frac{1}{r}+\frac{1}{\sqrt{R^{2}-r^{2}}}\right)$.
(b) $-\frac{1}{2}\left(\frac{1}{\sqrt{r R}}+\frac{1}{R-r}\right)$.
(c) $-\frac{1}{2}\left(\frac{1}{r}+\frac{1}{R+r}\right)$.
(d) $-\frac{1}{2}\left(\frac{1}{r}-\frac{1}{R+r}\right)$.
(e) $-\frac{1}{2}\left(\frac{1}{r}-\frac{1}{\sqrt{R^{2}-r^{2}}}\right)$.
9. Consider again the torus from the previous question. At any point of the torus one principal curvature is $-1 / r$. The other principal curvature at the point $q=(-R+$ $r \cos \alpha, 0, r \sin \alpha)$ is:
(a) $\frac{\cos \alpha}{R-r \cos \alpha}$.
(b) $\frac{\cos \alpha}{R-r}$.
(c) $\frac{\tan \alpha}{R-r}$.
(d) $\frac{\cos \alpha}{R-r \sin \alpha}$.
(e) $\frac{\tan \alpha}{R+r}$.
10. Consider again the torus from the previous two questions. When the point q is rotated about the x_{3}-axis, it generates the curve $\gamma(t)=(\cos t(-R+r \cos \alpha), \sin t(-R+$ $r \cos \alpha), r \sin \alpha$), which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn $(t \in[0,2 \pi])$, producing a new tangent vector Y at q. The angle between X and Y is:
(a) $\frac{\alpha R}{r}$.
(b) $2 \pi \sin \alpha$.
(c) $\frac{\tan \alpha R}{r}$.
(d) $2 \pi \cos \alpha$.
(e) $\sin \alpha$.

[^0]: ${ }^{1}$ That is, $X=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$ in the derivation point of view, or simply $X(p)=$ $\left(X^{1}(p), X^{2}(p), \ldots, X^{n}(p)\right) \in \mathbb{R}^{n} \cong T U_{p}$ for all $p \in \mathbb{R}^{n}$.

[^1]: ${ }^{1}$ The average of the principal curvatures.

