D-MATH Differential Geometry I Prof. Dr. Joaquim Serra

Exam Problems HS21

1. The Catenoid

Consider the following parametrization of a "cylindrical" surface of revolution in \mathbb{R}^3 :

$$S_f \coloneqq \{x \in \mathbb{R}^3 \mid \sqrt{(x^1)^2 + (x^2)^2} = f(x^3), \ |x^3| \le 1\},\$$

where $f: [-1,1] \to (0,\infty)$ is smooth. Notice that ∂S_f is the union of two circumferences.

- (a) Show that the area of S_f is given by $2\pi \int_{-1}^{1} f(t) \sqrt{1 + f'(t)^2} dt$.
- (b) Prove that if S_f has minimal area among all cylindrical surfaces as above with the same boundary, then f must satisfy:

(i)
$$ff'' = 1 + (f')^2$$
,
(ii) $\left(\frac{f}{\sqrt{1+(f')^2}}\right)' = 0$.

- (c) Show that solutions of (ii) must be of the form $f(t) = a \cosh(\frac{t-b}{a})$ for some $b \in \mathbb{R}$ and a > 0. [*Hint:* Use $\int \frac{dy}{\sqrt{y^2 - a^2}} = \cosh^{-1}(\frac{y}{a}) + \text{constant.}$]
- (d) Prove that $\int_{S_f} K \, dA = -2\pi \int_{f'(-1)}^{f'(1)} \frac{dz}{(1+z^2)^{3/2}}$.

2. Lie Bracket and Curvature

Let X be a C^{∞} vector field on an open set $U \subset \mathbb{R}^n$. By the identification of vector fields and derivations, X acts on C^{∞} functions:

$$Xf = \sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}} f \text{ for } f \in C^{\infty}(U),$$

where X^i are the components¹ of X. Similarly, if Y is a another C^{∞} vector field on U, we let X act on Y component-wise. That is, we denote XY the vector field with components

$$(XY)^i \coloneqq XY^i = \sum_{j=1}^n X^j \frac{\partial}{\partial x^j} Y^i.$$

HS21

That is, $X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$ in the derivation point of view, or simply $X(p) = (X^{1}(p), X^{2}(p), \dots, X^{n}(p)) \in \mathbb{R}^{n} \cong TU_{p}$ for all $p \in \mathbb{R}^{n}$.

Given two smooth vector fields X, Y as above, define their *Lie bracket* [X, Y] := Z as the map $Z: C^{\infty}(U) \to C^{\infty}(U)$ defined by

$$Zf \coloneqq X(Yf) - Y(Xf).$$

- (a) Show that Zf can be written as $\sum Z^i \frac{\partial}{\partial x^i} f$ and compute Z^i in terms of the X^i 's and Y^i 's. Deduce that Z is a smooth vector field on U.
- (b) Prove [X, Y] = XY YX.
- (c) Let $\psi: U \to V$ be a C^{∞} diffeomorphism. Define the *push-forward* of a vector field T on U, denoted ψ_*T , as

$$\psi_*(T)(q) \coloneqq d\psi_{\psi^{-1}(q)} T(\psi^{-1}(q)),$$

for $q \in V$. Prove that $[\psi_*(X), \psi_*(Y)] = \psi_*([X, Y])$. [*Hint:* Use that for all smooth $f: V \to \mathbb{R}$, and vector field T on U we have $(\psi_*(T)f) \circ \psi = T(f \circ \psi)$.]

- (d) Show that if $M \subset \mathbb{R}^3$ is an embedded surface, and X, Y are tangent vector fields on M, then the Lie bracket [X, Y] is well-defined as $[\tilde{X}, \tilde{Y}]$, where \tilde{X}, \tilde{Y} are extensions of X, Y to an open set $U \subset \mathbb{R}^3$ containing M. Prove that [X, Y] is also tangent to M. [*Hint:* You may assume that such extensions always exists. Also, if $\psi \colon W \to V$ is a diffeomorphism between open subsets of \mathbb{R}^3 , then T is tangent to $M \cap W$ if and only if $\psi_*(T)$ is tangent to $\psi(M \cap W) \subset V$.]
- (e) With M as above, show that if X, Y are tangent vector fields such that X(p), Y(p) is an orthonormal basis of TM_p for all $p \in M$, then

$$\langle D_X D_Y X - D_Y D_X X - D_{[X,Y]} X, Y \rangle = -K,$$

where D denotes the covariant derivative and K is the Gauss curvature. [*Hint:* Denoting ν the unit normal to M, recall that

$$K = \langle XX, \nu \rangle \langle YY, \nu \rangle - \langle YX, \nu \rangle \langle XY, \nu \rangle.$$

Using the previous expression for K, and that X, Y, ν are orthonormal, prove $-K = \langle Y(\langle XX, \nu \rangle \nu) - X(\langle YX, \nu \rangle \nu), Y \rangle$.

Also, recall the definition of covariant derivative $D_Z T = ZT - \langle ZT, \nu \rangle \nu$ for any tangent vector fields Z, T.]

HS21

D-MATH

Differential Geometry I

Prof. Dr. Joaquim Serra

3. Sard's Lemma and Whitney's Embedding Theorem

Let M be a compact m-dimensional C^{∞} manifold. Recall that there exists an embedding $F: M \to \mathbb{R}^n$ for a (possibly very large) n depending on M (Theorem 8.9 in the lecture). The goal of this problem is to lower the dimension n to 2m + 1.

(a) Let $\tilde{M} \subset \mathbb{R}^n$ be a compact *m*-dimensional C^{∞} submanifold. Prove that

$$\mathcal{U}T\tilde{M} \coloneqq \left\{ (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n : x \in \tilde{M}, \xi \in T\tilde{M}_x, |\xi| = 1 \right\}$$

is a (2m-1)-dimensional compact C^{∞} submanifold of \mathbb{R}^{2n} . [*Hint:* Using a submanifold chart (ψ, U) notice that $\tilde{M} \cap U$ can be written as $\{x \in U : \psi^{m+1}(x) = \cdots = \psi^n(x) = 0\}$. Try to write $\mathcal{U}T\tilde{M}$ locally as the zero set of a certain map $G : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{2n-2m+1}$ having 0 as a regular value.]

(b) Given $e \in \mathbb{S}^{n-1}$ define

$$e^{\perp} \coloneqq \{ x \in \mathbb{R}^n : e \cdot x = 0 \} \cong \mathbb{R}^{n-1},$$

and let $\pi_e \colon \mathbb{R}^n \to e^{\perp}$ be the orthogonal projection $x \mapsto x - (e \cdot x)e$. Prove that $\pi_e|_{\tilde{M}}$ is an immersion if and only if e does *not* belong to the image of the map $\pi_2|_{\mathcal{U}T\tilde{M}} \colon \mathcal{U}T\tilde{M} \to \mathbb{S}^{n-1}$, defined as the restriction of the canonical projection $\pi_2(x,\xi) = \xi$.

(c) Prove that $\pi_e|_{\tilde{M}}$ is injective if and only if $\pm e$ do *not* belong to the image of the map $g: (\tilde{M} \times \tilde{M}) \setminus \Delta \to \mathbb{S}^{n-1}$, defined as

$$g(x,y) \coloneqq \frac{x-y}{|x-y|},$$

where $\Delta \coloneqq \{(x, x) \colon x \in \tilde{M}\}.$

- (d) Using Sard's Lemma, show that if n > 2m + 1, then for almost every $e \in \mathbb{S}^{n-1}$ the projection $\pi_e \colon \tilde{M} \to e^{\perp}$ is an injective immersion. [*Hint:* Recall Sard's Lemma. If $F \colon M^m \to N^n$ is a C^r map with $r > \max\{0, n - m\}$, then the set of singular values of F has measure zero in N.]
- (e) Prove Whitney's Embedding Theorem (compact case), namely, that every smooth compact *m*-dimensional manifold can be embedded in \mathbb{R}^{2m+1} .

Differential Geometry I exam (multiple choice part)

1. The radius of the osculating circle of the curve $c(t) := (at, -t^2), a > 0$, at the point (0, 0) is given by:

- (a) $\frac{a^2}{2}$.
- (b) $\frac{a}{2}$.
- (c) 2.
- (d) 1.
- (e) $\frac{\sqrt{a}}{2}$.

2. Assume that a (smooth, nonempty) compact 2-dimensional submanifold $M \subset \mathbb{R}^3$ satisfies $\int_M H^2 dA = \int_M K dA$, where K is the Gauss curvature and H is the mean curvature¹. Then M must be a/an

- (a) sphere.
- (b) union of spheres.
- (c) ellipsoid.
- (d) Clifford torus.
- (e) point.

3. Consider the differential 1-form $\omega = -ydx + xdy$ in \mathbb{R}^2 . Let *D* be the ellipsoid $\{(x, y) : ax^2 + \frac{1}{a}y^2 \leq 1\}$, where a > 0. Then $\int_{\partial D} \omega$ equals:

- (a) 2π .
- (b) $\pi\left(a+\frac{1}{a}\right)$.
- (c) $e^{2\pi i}$.
- (d) $-\pi \cos(a)$.
- (e) 1.

¹The average of the principal curvatures.

4. Let $C \subset \mathbb{R}^3$ be the cylinder in \mathbb{R}^3 , parametrized as

$$f(u,v) = \left(R\cos u, R\sin u, v^3\right),\,$$

R > 0. What are the correct values of the Gauss curvature K and mean curvature H at the point $(R, 0, \sqrt[3]{2}) \in C$ (with respect to the outward pointing Gauss map)?

(a)
$$K = 0, H = 0.$$

- (b) $K = 0, H = -\frac{1}{2R}.$
- (c) $K = 0, H = \frac{1}{2R} + 1.$

(d)
$$K = \frac{2}{R^2}, H = \frac{1}{R}.$$

(e)
$$K = 0, H = -R/2.$$

5. Consider a "spherical pentagon" (geodesically convex region bounded by five circular arcs) of area A in a 2-sphere of \mathbb{R}^3 with area A'. The sum of its (five) interior angles is:

(a) $\pi (3 + 4\frac{A}{A'}).$

(b)
$$2\pi + A/A'$$
.

- (c) $3\pi + A$.
- (d) $5\pi + 2A/\sqrt{A'}$.
- (e) $5\pi + A/\sqrt{A'}$

6. Let $M \subset \mathbb{R}^3$ be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the differential of the area)?

- (a) -3π .
- (b) 0.
- (c) depends on how M is embedded in \mathbb{R}^3 .
- (d) -6π .
- (e) -8π .

7. Which one is true?

- (a) Cylinders, spheres and planes are the only connected submanifolds of \mathbb{R}^3 with constant mean curvature.
- (b) A smooth compact surface in \mathbb{R}^3 whose area is minimal among all surfaces enclosing the same volume must have constant mean curvature.
- (c) Any connected embedded minimal surface $M \subset \mathbb{R}^3$ with $\int_M K dA > -8\pi$ must be a plane.
- (d) Alexandroff's theorem classifies all constant mean curvature embedded surfaces.
- (e) If a constant mean curvature surface is embedded and non-compact, then it must be a cylinder.

D-MATH

Prof. Dr. Joaquim Serra

8. Consider the torus of revolution

$$f(x,y) = \big(\cos x(-R + r\cos y), \sin x(-R + r\cos y), r\sin y\big),$$

R > r > 0, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at p = (-R - r, 0, 0)is:

- (a) $-\frac{1}{2}\left(\frac{1}{r} + \frac{1}{\sqrt{R^2 r^2}}\right).$
- (b) $-\frac{1}{2}\left(\frac{1}{\sqrt{rR}} + \frac{1}{R-r}\right).$

(c)
$$-\frac{1}{2}\left(\frac{1}{r} + \frac{1}{R+r}\right).$$

(d)
$$-\frac{1}{2}\left(\frac{1}{r} - \frac{1}{R+r}\right).$$

(e)
$$-\frac{1}{2}\left(\frac{1}{r} - \frac{1}{\sqrt{R^2 - r^2}}\right).$$

9. Consider again the torus from the previous question. At any point of the torus one principal curvature is -1/r. The other principal curvature at the point $q = (-R + r \cos \alpha, 0, r \sin \alpha)$ is:

(a)
$$\frac{\cos\alpha}{R-r\cos\alpha}$$
.

(b)
$$\frac{\cos \alpha}{R-r}$$
.

 $(c) \quad \frac{\tan \alpha}{R-r}.$

(d)
$$\frac{\cos\alpha}{R-r\sin\alpha}$$
.

(e)
$$\frac{\tan \alpha}{R+r}$$
.

10. Consider again the torus from the previous two questions. When the point q is rotated about the x_3 -axis, it generates the curve $\gamma(t) = (\cos t(-R + r \cos \alpha), \sin t(-R + r \cos \alpha), r \sin \alpha)$, which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn ($t \in [0, 2\pi]$), producing a new tangent vector Y at q. The angle between X and Y is:

- (a) $\frac{\alpha R}{r}$.
- (b) $2\pi \sin \alpha$.
- (c) $\frac{\tan \alpha R}{r}$.
- (d) $2\pi \cos \alpha$.
- (e) $\sin \alpha$.