Prof. Dr. Joaquim Serra

Repetition Exam - Open Problems

1. Gauss-Bonnet and moving frames

Let $U \subset \mathbb{R}^2$ be open, $f: U \to \mathbb{R}^3$ an embedding and let M = f(U).

- a) Show that there exist two smooth vector fields $E_i : M \to \mathbb{R}^3$, i = 1, 2, which are tangent to M and satisfy $E_1 \circ f = \frac{\partial_1 f}{|\partial_1 f|}$ and $\langle E_i, E_j \rangle = \delta_{ij}$.
- b) Suppose that $D \subset M$ is homeomorphic to a disk and is bounded by a smooth unit speed curve $c : [0, L] \to M$. Let $\nu(s)$ be the unit normal to \overline{D} at c(s) pointing towards the interior of \overline{D} , and suppose that $c'(s), \nu(s)$ has the same orientation as E_1, E_2 . Prove that

$$\int_D K dA = -\int_0^L \langle (E_1 \circ c)', E_2 \circ c \rangle ds,$$

where K is the Gauss curvature.

Hint: Consider a continuous angle $\varphi : [0, L] \to \mathbb{R}$ between E_1 and c' (i.e. satisfying $c' = \cos \varphi E_1 \circ c + \sin \varphi E_2 \circ c$) and compute φ' . You can use without proving it that $\varphi(L) - \varphi(0) = 2\pi$, as proven in the lecture.

c) Let ω^i be the dual 1-forms to E_i , i = 1, 2 (that is, $\omega^i(X) := \langle E_i, X \rangle$ for any tangent vector field X). Prove that

$$\int_{\bar{D}} \omega^1 \wedge \omega^2 = \int_{f^{-1}(\bar{D})} \sqrt{\det(g_{ij})} dx^1 dx^2 =: A(\bar{D}),$$

where $g_{ij} = \langle \partial_i f, \partial_j f \rangle$ denotes the first fundamental form and A the area measure.

d) Define the 1-forms Ω_j^i , i, j = 1, 2, acting on tangent vector fields X as follows $\Omega_j^i(X) := \langle D_X E_i, E_j \rangle$, where D_X denotes the covariant derivative.¹ Prove that $\Omega_j^i = -\Omega_j^j$ and deduce from b) that

$$d\Omega_2^1 = K\,\omega^1 \wedge \omega^2.$$

¹Recall $D_X E_i(p) := ((E_i \circ \tilde{c})'(0))^T$ for any curve \tilde{c} with $\tilde{c}'(0) = X_p$, where $(\cdot)^T$ is the orthogonal projection onto the tangent space TM_p

D-MATH Differential Geometry I

Prof. Dr. Joaquim Serra

2. Isoperimetric problem on a Cartan-Hadamard surface

Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be a parametrized surface, such that f is a homeomorphism between \mathbb{R}^2 and $M := f(\mathbb{R}^2)$. Assume that f has nonnegative Gauss curvature K. Given $\Omega \subset M$ bounded, we say that $\partial\Omega$ is C^2 if it consists of a finite disjoint union of C^2 simple closed curves. For such Ω define the *isoperimetric* quotient

$$\mathcal{I}(\Omega) := rac{ ext{length}(\partial \Omega)}{ ext{area}(\Omega)^{rac{1}{2}}}.$$

a) Suppose first that M is isometric to the Euclidean plane. Show that if Ω_0 is a minimizer of \mathcal{I} (such that $\partial \Omega_0$ is C^2) then

$$\mathcal{I}(\Omega_0) = \sqrt{4\pi}$$
 and Ω_0 is an Euclidean disc.

Hint: Show that, by minimality, $\partial \Omega_0$ must consist of only one simple closed curve γ , and prove (using the first variation of arc length) that the geodesic curvature κ_q of γ must be constant.

b) For general $K \leq 0$, show that if Ω_0 is a minimizer of \mathcal{I} (with $\partial \Omega_0$ of class C^2) then it must be isometric to an Euclidean disc.

Hint: Using $\Omega_r = f(B_r(0))$, with $r \to 0^+$ as competitors, show that $\mathcal{I}(\Omega_0) \leq \sqrt{4\pi}$. Show that, as in a), $\partial\Omega_0$ must consist of only one simple closed curve γ . Let ν be the inwards unit normal to $\partial\Omega_0$, define (for ε small) $\gamma_{\varepsilon}(t) := \gamma(t) + \varepsilon\nu(t)$, and let Ω_{ε} be the bounded connected component of $M \setminus \text{image}(\gamma_{\varepsilon})$. Show that $\frac{d}{d\varepsilon}|_{\varepsilon=0}\mathcal{I}(\Omega_{\varepsilon}) \leq 0$, and < 0 unless $K \equiv 0$ in Ω_0 . D-MATH

Differential Geometry I

Prof. Dr. Joaquim Serra

3. Weyl's tube formula

Let $U \subset \mathbb{R}^2$ be open and $f: U \to \mathbb{R}^3$ be an immersion with Gauss map $\nu: U \to \mathbb{S}^2 \subset \mathbb{R}^3$. Suppose that there is $r_{\circ} > 0$ such that for every point of the surface $p \in f(U)$, the points $q_+, q_- \in \mathbb{R}^3$ defined as $q_{\pm} := p \pm r_{\circ}\nu(p)$ are such that the Euclidean balls $B_{r_{\circ}}(q_{\pm}) \subset \mathbb{R}^3$ satisfy $f(U) \cap B_{r_{\circ}}(q_{\pm}) = \{p\}$ (in particular the balls are tangent to the surface at p). For $\varepsilon \in \mathbb{R}$ with $|\varepsilon| < r_{\circ}$ and $t \in (-\varepsilon, \varepsilon)$ define:

$$f^t(x,y) := f(x,y) + t\nu(x,y).$$

a) Show that the first fundamental form g_{ij}^t of f^t satisfies

$$\sqrt{\det(g_{ij}^t(x,y))} = (1 - 2tH(x,y) + t^2K(x,y))\sqrt{\det(g_{ij}(x,y))},$$

where $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ and $K = \kappa_1 \kappa_2$ are respectively the mean and Gauss curvature of f at the point (x, y) (here κ_i denote the principal curvatures), and where $g_{ij} := g_{ij}^0$ is the first fundamental form of f.

b) For f, r_{\circ} , as above show that the volume of the "cylinder" $\{f^t(x,y) : (x,y) \in U, t \in (-\varepsilon,\varepsilon)\}, \varepsilon \in (0,r_{\circ})$ is given by

$$\iint_U \left(2\varepsilon + \frac{2}{3}\varepsilon^3 K(x,y)\right) \sqrt{\det(g_{ij}(x,y))} \, dx \, dy.$$

c) Prove Weyl's tube formula: let Σ be a *closed submanifold*² of \mathbb{R}^3 , then for all $\varepsilon > 0$ sufficiently small, the volume of the "tube"

$$\{p \in \mathbb{R}^3 : \operatorname{dist}(p, \Sigma) < \varepsilon\},\$$

is given by

$$2A(\Sigma)\varepsilon + \frac{4\pi}{3}\chi(\Sigma)\varepsilon^3.$$

Here $A(\Sigma)$ and $\chi(\Sigma)$ denote respectively the area and the Euler characteristic of the surface.

²That is, a compact submanifold without boundary, for example a sphere or a torus.

HS21

Differential Geometry I Repetition exam (multiple choice part)

1. Assume that a (smooth, nonempty) 2-dimensional submanifold $M \subset \mathbb{R}^3$ is homeomorphic to the sphere and satisfies $\int_M H^2 dA = 4\pi$, where H is the mean curvature¹. Then M must be isometric to a/an:

- (a) sphere.
- (b) closed minimal surface.
- (c) ellipsoid.
- (d) Willmore's torus.
- (e) small smooth perturbation of the sphere.

2. Consider the differential 2-form $\omega = -ydx \wedge dz$ in \mathbb{R}^3 . Let D be the ellipsoid $\{(x, y, z) : (x/a)^2 + (y/b)^2 + (z/c)^2 \leq 1\}$, where $a, b, c \in \mathbb{R} \setminus \{0\}$. Then $\int_{\partial D} \omega$ equals:

(a) $\frac{4}{3}\pi |abc|$.

(b)
$$\pi\sqrt{a^2+b^2+c^2}$$
.

- (c) 4π .
- (d) $\pi \cos a \cos b \cos c$
- (e) $\pi \cosh a \cosh b \cosh c$.

¹The average of the principal curvatures.

D-MATH Prof. Dr. Joaquim Serra

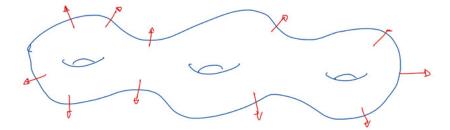
3. Let $C \subset \mathbb{R}^3$ be the cylinder in \mathbb{R}^3 , parametrized as

$$f(u,v) = \left(R\cos(u+v), R\sin(u+v), v\right),$$

R > 0. What are the correct values of the Gauss curvature K and the mean curvature H at the point $(R, 0, \pi) \in C$ (with respect to the outward pointing Gauss map)?

(a)
$$K = 0, H = 0.$$

- (b) $K = 0, H = -\frac{1}{2R}.$
- (c) $K = 0, H = \frac{1}{2R} + 1.$
- (d) $K = \frac{2}{R^2}, H = \frac{1}{R}.$
- (e) K = 0, H = -R/2.
- 4. Let $M \subset \mathbb{R}^3$ be the smooth surface as depicted:



What is the value of the integral of the Gauss curvature K over M (with respect to the differential of the area)?

- (a) -3π .
- (b) 0.
- (c) depends on how M is embedded in \mathbb{R}^3 .
- (d) -6π .
- (e) -8π .

D-MATH Prof. Dr. Joaquim Serra

5. Consider the circle in the sphere \mathbb{S}^2 whose points are at (geodesic) distance $R \in (0, \pi/2)$ from the north pole. Its length and geodesic curvature (at any of its points) are, respectively

- (a) $2\pi \sin R$, $\cot R$.
- (b) $2\pi R, \frac{\cos R}{R}$.
- (c) $2\pi R$, 1/R.
- (d) $2\pi \sin R$, $\tan R$.
- (e) $2\pi \sin R$, $\cos R$.

6. The area of the spherical cap (containing the north pole) enclosed by the circle in the previous question is:

- (a) $2\pi(1-\cos R)$.
- (b) $4\pi \sin(R/2)$.
- (c) $\pi \sin^2 R$.
- (d) $\pi \tan^2 R$.
- (e) $\pi \cot R$.

Differential Geometry I

D-MATH Prof. Dr. Joaquim Serra

7. Consider the torus of revolution

$$f(x,y) = \big(\cos x(-R + r\cos y), \sin x(-R + r\cos y), r\sin y\big),$$

R > r > 0, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at p = (-R - r, 0, 0)is:

- (a) $-\frac{1}{2}\left(\frac{1}{r} + \frac{1}{\sqrt{R^2 r^2}}\right)$
- (b) $-\frac{1}{2}\left(\frac{1}{\sqrt{rR}} + \frac{1}{R-r}\right).$

(c)
$$-\frac{1}{2}\left(\frac{1}{r} + \frac{1}{R+r}\right).$$

(d)
$$-\frac{1}{2}\left(\frac{1}{r} - \frac{1}{R+r}\right).$$

(e)
$$-\frac{1}{2}\left(\frac{1}{r} - \frac{1}{\sqrt{R^2 - r^2}}\right).$$

8. Consider again the torus from the previous question. At any point of the torus one principal curvature is -1/r. The other principal curvature at the point $q = (-R + r \cos \alpha, 0, r \sin \alpha)$ is:

(a)
$$\frac{\cos\alpha}{R - r\cos\alpha}$$

(b)
$$\frac{\cos\alpha}{R-r}$$

 $(c) \quad \frac{\tan \alpha}{R-r}$

(d)
$$\frac{\cos\alpha}{R - r\sin\alpha}$$

(e)
$$\frac{\tan \alpha}{R+r}$$

D-MATH Prof. Dr. Joaquim Serra

9. Consider again the torus from the previous two questions. When the point q is rotated about the x_3 -axis, it generates the curve $\gamma(t) = (\cos t(-R + r \cos \alpha), \sin t(-R + r \cos \alpha), r \sin \alpha)$, which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn ($t \in [0, 2\pi]$), producing a new tangent vector Y at q. The angle between X and Y is:

- (a) $\frac{\alpha R}{r}$
- (b) $2\pi \sin \alpha$
- (c) $\frac{\tan \alpha R}{r}$
- (d) $2\pi \cos \alpha$
- (e) $\sin \alpha$