Repetition Exam - Open Problems

1. Gauss-Bonnet and moving frames

Let $U \subset \mathbb{R}^{2}$ be open, $f: U \rightarrow \mathbb{R}^{3}$ an embedding and let $M=f(U)$.
a) Show that there exist two smooth vector fields $E_{i}: M \rightarrow \mathbb{R}^{3}, i=1,2$, which are tangent to M and satisfy $E_{1} \circ f=\frac{\partial_{1} f}{\left|\partial_{1} f\right|}$ and $\left\langle E_{i}, E_{j}\right\rangle=\delta_{i j}$.
b) Suppose that $\bar{D} \subset M$ is homeomorphic to a disk and is bounded by a smooth unit speed curve $c:[0, L] \rightarrow M$. Let $\nu(s)$ be the unit normal to \bar{D} at $c(s)$ pointing towards the interior of \bar{D}, and suppose that $c^{\prime}(s), \nu(s)$ has the same orientation as E_{1}, E_{2}. Prove that

$$
\int_{D} K d A=-\int_{0}^{L}\left\langle\left(E_{1} \circ c\right)^{\prime}, E_{2} \circ c\right\rangle d s
$$

where K is the Gauss curvature.
Hint: Consider a continuous angle $\varphi:[0, L] \rightarrow \mathbb{R}$ between E_{1} and c^{\prime} (i.e. satisfying $c^{\prime}=\cos \varphi E_{1} \circ c+\sin \varphi E_{2} \circ c$) and compute φ^{\prime}. You can use without proving it that $\varphi(L)-\varphi(0)=2 \pi$, as proven in the lecture.
c) Let ω^{i} be the dual 1-forms to $E_{i}, i=1,2$ (that is, $\omega^{i}(X):=\left\langle E_{i}, X\right\rangle$ for any tangent vector field X). Prove that

$$
\int_{\bar{D}} \omega^{1} \wedge \omega^{2}=\int_{f^{-1}(\bar{D})} \sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} d x^{2}=: A(\bar{D})
$$

where $g_{i j}=\left\langle\partial_{i} f, \partial_{j} f\right\rangle$ denotes the first fundamental form and A the area measure.
d) Define the 1-forms $\Omega_{j}^{i}, i, j=1,2$, acting on tangent vector fields X as follows $\Omega_{j}^{i}(X):=\left\langle D_{X} E_{i}, E_{j}\right\rangle$, where D_{X} denotes the covariant derivative 1^{1} Prove that $\Omega_{j}^{i}=-\Omega_{i}^{j}$ and deduce from b) that

$$
d \Omega_{2}^{1}=K \omega^{1} \wedge \omega^{2} .
$$

[^0]
2. Isoperimetric problem on a Cartan-Hadamard surface

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a parametrized surface, such that f is a homeomorphism between \mathbb{R}^{2} and $M:=f\left(\mathbb{R}^{2}\right)$. Assume that f has nonnegative Gauss curvature K. Given $\Omega \subset M$ bounded, we say that $\partial \Omega$ is C^{2} if it consists of a finite disjoint union of C^{2} simple closed curves. For such Ω define the isoperimetric quotient

$$
\mathcal{I}(\Omega):=\frac{\operatorname{length}(\partial \Omega)}{\operatorname{area}(\Omega)^{\frac{1}{2}}}
$$

a) Suppose first that M is isometric to the Euclidean plane. Show that if Ω_{0} is a minimizer of \mathcal{I} (such that $\partial \Omega_{0}$ is C^{2}) then

$$
\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi} \text { and } \Omega_{0} \text { is an Euclidean disc. }
$$

Hint: Show that, by minimality, $\partial \Omega_{0}$ must consist of only one simple closed curve γ, and prove (using the first variation of arc length) that the geodesic curvature κ_{g} of γ must be constant.
b) For general $K \leq 0$, show that if Ω_{0} is a minimizer of \mathcal{I} (with $\partial \Omega_{0}$ of class C^{2}) then it must be isometric to an Euclidean disc.
Hint: Using $\Omega_{r}=f\left(B_{r}(0)\right)$, with $r \rightarrow 0^{+}$as competitors, show that $\mathcal{I}\left(\Omega_{0}\right) \leq$ $\sqrt{4 \pi}$. Show that, as in a), $\partial \Omega_{0}$ must consist of only one simple closed curve γ. Let ν be the inwards unit normal to $\partial \Omega_{0}$, define (for ε small) $\gamma_{\varepsilon}(t):=\gamma(t)+$ $\varepsilon \nu(t)$, and let Ω_{ε} be the bounded connected component of $M \backslash \operatorname{image}\left(\gamma_{\varepsilon}\right)$. Show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathcal{I}\left(\Omega_{\varepsilon}\right) \leq 0$, and <0 unless $K \equiv 0$ in Ω_{0}.

Prof. Dr. Joaquim Serra

3. Weyl's tube formula

Let $U \subset \mathbb{R}^{2}$ be open and $f: U \rightarrow \mathbb{R}^{3}$ be an immersion with Gauss map $\nu: U \rightarrow \mathbb{S}^{2} \subset \mathbb{R}^{3}$. Suppose that there is $r_{\circ}>0$ such that for every point of the surface $p \in f(U)$, the points $q_{+}, q_{-} \in \mathbb{R}^{3}$ defined as $q_{ \pm}:=p \pm r_{0} \nu(p)$ are such that the Euclidean balls $B_{r_{0}}\left(q_{ \pm}\right) \subset \mathbb{R}^{3}$ satisfy $f(U) \cap B_{r_{0}}\left(q_{ \pm}\right)=\{p\}$ (in particular the balls are tangent to the surface at p). For $\varepsilon \in \mathbb{R}$ with $|\varepsilon|<r_{\text {o }}$ and $t \in(-\varepsilon, \varepsilon)$ define:

$$
f^{t}(x, y):=f(x, y)+t \nu(x, y) .
$$

a) Show that the first fundamental form $g_{i j}^{t}$ of f^{t} satisfies

$$
\sqrt{\operatorname{det}\left(g_{i j}^{t}(x, y)\right)}=\left(1-2 t H(x, y)+t^{2} K(x, y)\right) \sqrt{\operatorname{det}\left(g_{i j}(x, y)\right)}
$$

where $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$ and $K=\kappa_{1} \kappa_{2}$ are respectively the mean and Gauss curvature of f at the point (x, y) (here κ_{i} denote the principal curvatures), and where $g_{i j}:=g_{i j}^{0}$ is the first fundamental form of f.
b) For f, r_{o}, as above show that the volume of the "cylinder" $\left\{f^{t}(x, y)\right.$: $(x, y) \in U, t \in(-\varepsilon, \varepsilon)\}, \varepsilon \in\left(0, r_{\circ}\right)$ is given by

$$
\iint_{U}\left(2 \varepsilon+\frac{2}{3} \varepsilon^{3} K(x, y)\right) \sqrt{\operatorname{det}\left(g_{i j}(x, y)\right)} d x d y
$$

c) Prove Weyl's tube formula: let Σ be a closed submanifold ${ }^{2}$ of \mathbb{R}^{3}, then for all $\varepsilon>0$ sufficiently small, the volume of the "tube"

$$
\left\{p \in \mathbb{R}^{3}: \operatorname{dist}(p, \Sigma)<\varepsilon\right\},
$$

is given by

$$
2 A(\Sigma) \varepsilon+\frac{4 \pi}{3} \chi(\Sigma) \varepsilon^{3}
$$

Here $A(\Sigma)$ and $\chi(\Sigma)$ denote respectively the area and the Euler characteristic of the surface.

[^1]
Differential Geometry I Repetition exam (multiple choice part)

1. Assume that a (smooth, nonempty) 2-dimensional submanifold $M \subset \mathbb{R}^{3}$ is homeomorphic to the sphere and satisfies $\int_{M} H^{2} d A=4 \pi$, where H is the mean curvature ${ }^{1}$. Then M must be isometric to a/an:
(a) sphere.
(b) closed minimal surface.
(c) ellipsoid.
(d) Willmore's torus.
(e) small smooth perturbation of the sphere.
2. Consider the differential 2-form $\omega=-y d x \wedge d z$ in \mathbb{R}^{3}. Let D be the ellipsoid $\{(x, y, z)$: $\left.(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1\right\}$, where $a, b, c \in \mathbb{R} \backslash\{0\}$. Then $\int_{\partial D} \omega$ equals:
(a) $\frac{4}{3} \pi|a b c|$.
(b) $\pi \sqrt{a^{2}+b^{2}+c^{2}}$.
(c) 4π.
(d) $\pi \cos a \cos b \cos c$
(e) $\pi \cosh a \cosh b \cosh c$.

[^2]3. Let $C \subset \mathbb{R}^{3}$ be the cylinder in \mathbb{R}^{3}, parametrized as
$$
f(u, v)=(R \cos (u+v), R \sin (u+v), v)
$$
$R>0$. What are the correct values of the Gauss curvature K and the mean curvature H at the point $(R, 0, \pi) \in C$ (with respect to the outward pointing Gauss map)?
(a) $K=0, H=0$.
(b) $K=0, H=-\frac{1}{2 R}$.
(c) $K=0, H=\frac{1}{2 R}+1$.
(d) $K=\frac{2}{R^{2}}, H=\frac{1}{R}$.
(e) $K=0, H=-R / 2$.
4. Let $M \subset \mathbb{R}^{3}$ be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the differential of the area)?
(a) -3π.
(b) 0 .
(c) depends on how M is embedded in \mathbb{R}^{3}.
(d) -6π.
(e) -8π.
5. Consider the circle in the sphere \mathbb{S}^{2} whose points are at (geodesic) distance $R \in(0, \pi / 2)$ from the north pole. Its length and geodesic curvature (at any of its points) are, respectively
(a) $2 \pi \sin R, \cot R$.
(b) $2 \pi R, \frac{\cos R}{R}$.
(c) $2 \pi R, 1 / R$.
(d) $2 \pi \sin R, \tan R$.
(e) $2 \pi \sin R, \cos R$.
6. The area of the spherical cap (containing the north pole) enclosed by the circle in the previous question is:
(a) $2 \pi(1-\cos R)$.
(b) $4 \pi \sin (R / 2)$.
(c) $\pi \sin ^{2} R$.
(d) $\pi \tan ^{2} R$.
(e) $\pi \cot R$.
7. Consider the torus of revolution

$$
f(x, y)=(\cos x(-R+r \cos y), \sin x(-R+r \cos y), r \sin y),
$$

$R>r>0$, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at $p=(-R-r, 0,0)$ is:
(a) $-\frac{1}{2}\left(\frac{1}{r}+\frac{1}{\sqrt{R^{2}-r^{2}}}\right)$
(b) $-\frac{1}{2}\left(\frac{1}{\sqrt{r R}}+\frac{1}{R-r}\right)$.
(c) $-\frac{1}{2}\left(\frac{1}{r}+\frac{1}{R+r}\right)$.
(d) $-\frac{1}{2}\left(\frac{1}{r}-\frac{1}{R+r}\right)$.
(e) $-\frac{1}{2}\left(\frac{1}{r}-\frac{1}{\sqrt{R^{2}-r^{2}}}\right)$.
8. Consider again the torus from the previous question. At any point of the torus one principal curvature is $-1 / r$. The other principal curvature at the point $q=(-R+$ $r \cos \alpha, 0, r \sin \alpha)$ is:
(a) $\frac{\cos \alpha}{R-r \cos \alpha}$
(b) $\frac{\cos \alpha}{R-r}$
(c) $\frac{\tan \alpha}{R-r}$
(d) $\frac{\cos \alpha}{R-r \sin \alpha}$
(e) $\frac{\tan \alpha}{R+r}$
9. Consider again the torus from the previous two questions. When the point q is rotated about the x_{3}-axis, it generates the curve $\gamma(t)=(\cos t(-R+r \cos \alpha), \sin t(-R+$ $r \cos \alpha), r \sin \alpha$), which is contained in the torus. Given a tangent vector X at q consider its parallel transport along γ for one full turn $(t \in[0,2 \pi])$, producing a new tangent vector Y at q. The angle between X and Y is:
(a) $\frac{\alpha R}{r}$
(b) $2 \pi \sin \alpha$
(c) $\frac{\tan \alpha R}{r}$
(d) $2 \pi \cos \alpha$
(e) $\sin \alpha$

[^0]: ${ }^{1}$ Recall $D_{X} E_{i}(p):=\left(\left(E_{i} \circ \tilde{c}\right)^{\prime}(0)\right)^{T}$ for any curve \tilde{c} with $\tilde{c}^{\prime}(0)=X_{p}$, where $(\cdot)^{T}$ is the orthogonal projection onto the tangent space $T M_{p}$

[^1]: ${ }^{2}$ That is, a compact submanifold without boundary, for example a sphere or a torus.

[^2]: ${ }^{1}$ The average of the principal curvatures.

