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Repetition Exam - Open Problems

1. Gauss-Bonnet and moving frames

Let U ⊂ R2 be open, f : U → R3 an embedding and let M = f(U).

a) Show that there exist two smooth vector fields Ei : M → R3, i = 1, 2,
which are tangent to M and satisfy E1 ◦ f = ∂1f

|∂1f | and 〈Ei, Ej〉 = δij.

b) Suppose that D̄ ⊂ M is homeomorphic to a disk and is bounded by a
smooth unit speed curve c : [0, L]→M . Let ν(s) be the unit normal to
D̄ at c(s) pointing towards the interior of D̄, and suppose that c′(s), ν(s)
has the same orientation as E1, E2. Prove that∫

D

KdA = −
∫ L

0

〈(E1 ◦ c)′, E2 ◦ c〉ds,

where K is the Gauss curvature.

Hint: Consider a continuous angle ϕ : [0, L] → R between E1 and c′ (i.e.
satisfying c′ = cosϕE1 ◦ c + sinϕE2 ◦ c) and compute ϕ′. You can use
without proving it that ϕ(L)− ϕ(0) = 2π, as proven in the lecture.

c) Let ωi be the dual 1-forms to Ei, i = 1, 2 (that is, ωi(X) := 〈Ei, X〉 for
any tangent vector field X). Prove that∫

D̄

ω1 ∧ ω2 =

∫
f−1(D̄)

√
det(gij)dx

1dx2 =: A(D̄),

where gij = 〈∂if, ∂jf〉 denotes the first fundamental form and A the
area measure.

d) Define the 1-forms Ωi
j, i, j = 1, 2, acting on tangent vector fields X as

follows Ωi
j(X) := 〈DXEi, Ej〉, where DX denotes the covariant deriva-

tive.1 Prove that Ωi
j = −Ωj

i and deduce from b) that

dΩ1
2 = K ω1 ∧ ω2.

1Recall DXEi(p) :=
(
(Ei ◦ c̃)′(0)

)T for any curve c̃ with c̃′(0) = Xp, where ( · )T is the
orthogonal projection onto the tangent space TMp

1



D-MATH
Prof. Dr. Joaquim Serra

Differential Geometry I HS21

2. Isoperimetric problem on a Cartan-Hadamard surface

Let f : R2 → R3 be a parametrized surface, such that f is a homeomorphism
between R2 and M := f(R2). Assume that f has nonnegative Gauss curva-
ture K. Given Ω ⊂M bounded, we say that ∂Ω is C2 if it consists of a finite
disjoint union of C2 simple closed curves. For such Ω define the isoperimetric
quotient

I(Ω) :=
length(∂Ω)

area(Ω)
1
2

.

a) Suppose first that M is isometric to the Euclidean plane. Show that if
Ω0 is a minimizer of I (such that ∂Ω0 is C2) then

I(Ω0) =
√

4π and Ω0 is an Euclidean disc.

Hint: Show that, by minimality, ∂Ω0 must consist of only one simple closed
curve γ, and prove (using the first variation of arc length) that the geodesic
curvature κg of γ must be constant.

b) For general K ≤ 0, show that if Ω0 is a minimizer of I (with ∂Ω0 of
class C2) then it must be isometric to an Euclidean disc.

Hint: Using Ωr = f(Br(0)), with r → 0+ as competitors, show that I(Ω0) ≤√
4π. Show that, as in a), ∂Ω0 must consist of only one simple closed curve γ.

Let ν be the inwards unit normal to ∂Ω0, define (for ε small) γε(t) := γ(t) +

εν(t), and let Ωε be the bounded connected component of M \ image(γε).
Show that d

dε

∣∣
ε=0
I(Ωε) ≤ 0, and < 0 unless K ≡ 0 in Ω0.
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3. Weyl’s tube formula

Let U ⊂ R2 be open and f : U → R3 be an immersion with Gauss map
ν : U → S2 ⊂ R3. Suppose that there is r◦ > 0 such that for every point of
the surface p ∈ f(U), the points q+, q− ∈ R3 defined as q± := p± r◦ν(p) are
such that the Euclidean balls Br◦(q±) ⊂ R3 satisfy f(U)∩Br◦(q±) = {p} (in
particular the balls are tangent to the surface at p). For ε ∈ R with |ε| < r◦
and t ∈ (−ε, ε) define:

f t(x, y) := f(x, y) + tν(x, y).

a) Show that the first fundamental form gtij of f t satisfies√
det(gtij(x, y)) =

(
1− 2tH(x, y) + t2K(x, y)

)√
det(gij(x, y)),

where H = 1
2
(κ1 + κ2) and K = κ1κ2 are respectively the mean and

Gauss curvature of f at the point (x, y) (here κi denote the principal
curvatures), and where gij := g0

ij is the first fundamental form of f .

b) For f , r◦, as above show that the volume of the “cylinder”
{
f t(x, y) :

(x, y) ∈ U, t ∈ (−ε, ε)
}
, ε ∈ (0, r◦) is given by∫∫

U

(
2ε+ 2

3
ε3K(x, y)

)√
det(gij(x, y)) dx dy.

c) Prove Weyl’s tube formula: let Σ be a closed submanifold2 of R3, then
for all ε > 0 sufficiently small, the volume of the “tube”

{p ∈ R3 : dist(p,Σ) < ε},

is given by

2A(Σ)ε+
4π

3
χ(Σ)ε3.

Here A(Σ) and χ(Σ) denote respectively the area and the Euler cha-
racteristic of the surface.

2That is, a compact submanifold without boundary, for example a sphere or a torus.
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Repetition exam (multiple choice part)

1. Assume that a (smooth, nonempty) 2-dimensional submanifold M ⊂ R3 is homeomor-
phic to the sphere and satisfies

∫
M
H2 dA = 4π, where H is the mean curvature1. Then M

must be isometric to a/an:

(a) sphere.

(b) closed minimal surface.

(c) ellipsoid.

(d) Willmore’s torus.

(e) small smooth perturbation of the sphere.

2. Consider the differential 2-form ω = −ydx∧ dz in R3. Let D be the ellipsoid {(x, y, z) :
(x/a)2 + (y/b)2 + (z/c)2 ≤ 1}, where a, b, c ∈ R \ {0}. Then

∫
∂D
ω equals:

(a) 4
3
π|abc|.

(b) π
√
a2 + b2 + c2.

(c) 4π.

(d) π cos a cos b cos c

(e) π cosh a cosh b cosh c.

1The average of the principal curvatures.
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3. Let C ⊂ R3 be the cylinder in R3, parametrized as

f(u, v) =
(
R cos(u+ v), R sin(u+ v), v

)
,

R > 0. What are the correct values of the Gauss curvature K and the mean curvature H
at the point (R, 0, π) ∈ C (with respect to the outward pointing Gauss map)?

(a) K = 0, H = 0.

(b) K = 0, H = − 1
2R

.

(c) K = 0, H = 1
2R

+ 1.

(d) K = 2
R2 , H = 1

R
.

(e) K = 0, H = −R/2.

4. Let M ⊂ R3 be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the
differential of the area)?

(a) −3π.

(b) 0.

(c) depends on how M is embedded in R3.

(d) −6π.

(e) −8π.
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5. Consider the circle in the sphere S2 whose points are at (geodesic) distance R ∈ (0, π/2)
from the north pole. Its length and geodesic curvature (at any of its points) are, respectively

(a) 2π sinR, cotR.

(b) 2πR, cosR
R

.

(c) 2πR, 1/R.

(d) 2π sinR, tanR.

(e) 2π sinR, cosR.

6. The area of the spherical cap (containing the north pole) enclosed by the circle in the
previous question is:

(a) 2π(1− cosR).

(b) 4π sin(R/2).

(c) π sin2R.

(d) π tan2R.

(e) π cotR.
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7. Consider the torus of revolution

f(x, y) =
(

cosx(−R + r cos y), sinx(−R + r cos y), r sin y
)
,

R > r > 0, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at p = (−R−r, 0, 0)
is:

(a) −1
2

(
1
r

+ 1√
R2−r2 )

(b) −1
2

(
1√
rR

+ 1
R−r ).

(c) −1
2

(
1
r

+ 1
R+r

).

(d) −1
2

(
1
r
− 1

R+r
).

(e) −1
2

(
1
r
− 1√

R2−r2 ).

8. Consider again the torus from the previous question. At any point of the torus one
principal curvature is −1/r. The other principal curvature at the point q = (−R +
r cosα, 0, r sinα) is:

(a) cosα
R−r cosα

(b) cosα
R−r

(c) tanα
R−r

(d) cosα
R−r sinα

(e) tanα
R+r
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9. Consider again the torus from the previous two questions. When the point q is ro-
tated about the x3-axis, it generates the curve γ(t) = (cos t(−R + r cosα), sin t(−R +
r cosα), r sinα), which is contained in the torus. Given a tangent vector X at q consider
its parallel transport along γ for one full turn (t ∈ [0, 2π]), producing a new tangent vector
Y at q. The angle between X and Y is:

(a) αR
r

(b) 2π sinα

(c) tanαR
r

(d) 2π cosα

(e) sinα
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