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Repetition Exam - Open Problems

1. Gauss-Bonnet and moving frames

Let U ⊂ R2 be open, f : U → R3 an embedding and let M = f(U).

a) Show that there exist two smooth vector fields Ei : M → R3, i = 1, 2,
which are tangent to M and satisfy E1 ◦ f = ∂1f

|∂1f | and 〈Ei, Ej〉 = δij.

b) Suppose that D̄ ⊂ M is homeomorphic to a disk and is bounded by a
smooth unit speed curve c : [0, L]→M . Let ν(s) be the unit normal to
D̄ at c(s) pointing towards the interior of D̄, and suppose that c′(s), ν(s)
has the same orientation as E1, E2. Prove that∫

D

KdA = −
∫ L

0

〈(E1 ◦ c)′, E2 ◦ c〉ds,

where K is the Gauss curvature.

Hint: Consider a continuous angle ϕ : [0, L] → R between E1 and c′ (i.e.
satisfying c′ = cosϕE1 ◦ c + sinϕE2 ◦ c) and compute ϕ′. You can use
without proving it that ϕ(L)− ϕ(0) = 2π, as proven in the lecture.

c) Let ωi be the dual 1-forms to Ei, i = 1, 2 (that is, ωi(X) := 〈Ei, X〉 for
any tangent vector field X). Prove that∫

D̄

ω1 ∧ ω2 =

∫
f−1(D̄)

√
det(gij)dx

1dx2 =: A(D̄),

where gij = 〈∂if, ∂jf〉 denotes the first fundamental form and A the
area measure.

d) Define the 1-forms Ωi
j, i, j = 1, 2, acting on tangent vector fields X as

follows Ωi
j(X) := 〈DXEi, Ej〉, where DX denotes the covariant deriva-

tive.1 Prove that Ωi
j = −Ωj

i and deduce from b) that

dΩ1
2 = K ω1 ∧ ω2.

1Recall DXEi(p) :=
(
(Ei ◦ c̃)′(0)

)T for any curve c̃ with c̃′(0) = Xp, where ( · )T is the
orthogonal projection onto the tangent space TMp
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Solution. a) We can take E1 ◦ f = ∂1f
|∂1f | , Ẽ2 ◦ f = ∂2f −〈E1 ◦ f, ∂2f〉(E1 ◦ f),

and E2 = Ẽ2

|Ẽ2|
.

b) If ϕ is the angle between E1 ◦ c and c′ we have c′ = cosϕe1 + sinϕe2,
where ei := Ei ◦ c. Hence, c′′ = cosϕe′1 + sinϕe′2 + ϕ′ν, .

Using c′′ = κgν and computing the scalar product with ν = (− sinϕe1 +
cosϕe2) we obtain

κg = 〈cosϕe′1 + sinϕe′2,− sinϕE1 + cosϕe2〉+ ϕ′ = 〈e′1, e2〉+ ϕ′.

Integrating for s between 0 and L and using Gauss-Bonnet (D̄ is a disk)
we obtain

2π −
∫
D̄

KdA =

∫ L

0

κg ds =

∫ L

0

(〈e′1, e2〉+ ϕ′)ds.

Using
∫ L

0
ϕ′ds = ϕ(L)− ϕ(0) = 2π we conclude.

c) Let N be Gauss map along f such that ∂1f, ∂2f,N is positively orien-
ted. Writing ∂if =

∑2
j=1 a

j
iEj we have√

det(gij) = (∂1f × ∂2f) ·N =
(
(a1

1E1 + a2
1E2)× (a1

2E1 + a2
2E2)

)
·N

= (a1
1a

2
2 − a2

1a
1
2)(E1 × E2) ·N = (ω1 × ω2)(a1

1E1 + a2
1E2, a

1
2E2 + a2

2E2)

= (ω1 ∧ ω2)(∂1f, ∂2f).

Hence,∫
D̄

ω1∧ω2 =

∫
f−1(D̄)

(ω1∧ω2)(∂1f, ∂2f)dx1dx2 =

∫
f−1(D̄)

√
det(gij)dx

1dx2 = A(D̄).

d) Note, on the one hand, that since Ω1
2(X) = 〈DXE1, E2〉 = −〈E1, DXE2〉 =

−Ω1
2(X), proving the antisymmetry property of Ωi

j.
Also, notice that Ω1

2(c′) = 〈e′1, e2〉. Hence, follows using b) and Stokes’
theorem (note that our chosen orientation of ∂D̄ is reversed with respect to
the one given by Stokes’ theorem that∫

D̄

K ω1 ∧ ω2 =

∫
D̄

KdA = −
∫ L

0

Ω1
2(c′)ds =

∫
∂D̄

Ω1
2 =

∫
D̄

dΩ1
2.

Since D̄ can be arbitrarily chosen (it can be a small neighbourhood of any
point in M) we conclude K ω1 ∧ ω2 = dΩ1

2.
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2. Isoperimetric problem on a Cartan-Hadamard surface

Let f : R2 → R3 be a parametrized surface, such that f is a homeomorphism
between R2 and M := f(R2). Assume that f has nonnegative Gauss curva-
ture K. Given Ω ⊂M bounded, we say that ∂Ω is C2 if it consists of a finite
disjoint union of C2 simple closed curves. For such Ω define the isoperimetric
quotient

I(Ω) :=
length(∂Ω)

area(Ω)
1
2

.

a) Suppose first that M is isometric to the Euclidean plane. Show that if
Ω0 is a minimizer of I (such that ∂Ω0 is C2) then

I(Ω0) =
√

4π and Ω0 is an Euclidean disc.

Hint: Show that, by minimality, ∂Ω0 must consist of only one simple closed
curve γ, and prove (using the first variation of arc length) that the geodesic
curvature κg of γ must be constant.

b) For general K ≤ 0, show that if Ω0 is a minimizer of I (with ∂Ω0 of
class C2) then it must be isometric to an Euclidean disc.

Hint: Using Ωr = f(Br(0)), with r → 0+ as competitors, show that I(Ω0) ≤√
4π. Show that, as in a), ∂Ω0 must consist of only one simple closed curve γ.

Let ν be the inwards unit normal to ∂Ω0, define (for ε small) γε(t) := γ(t) +

εν(t), and let Ωε be the bounded connected component of M \ image(γε).
Show that d

dε

∣∣
ε=0
I(Ωε) ≤ 0, and < 0 unless K ≡ 0 in Ω0.

Solution. a) We can assume without loss of generalityM = R2, since the iso-
perimetric problem is intrinsic. Notice first that any minimizer of I must be
connected, since the numerator is additive, length(∂ ∪Ωi) =

∑
i length(∂Ωi),

and the denominator subadditive area(∪iΩi)
1
2 ≤

∑
i area(Ωi)

1
2 , with equality

if and only if the number of components is one.
Note also that if ∂Ω0 has multiple components each is a closed simple

curve. Hence, the image of each of these curves divides R2 into two connec-
ted components (one bounded and one unbounded). Now, the union of (the
closures of) the bounded components is a new set which contains Ω0 and
whose boundary is contained in ∂Ω0. Hence, this set obtained by “filling the
holes” would have more area and less perimeter, contradicting the fact that
Ω0 minimizes I.

Let γ : [0, L]→ R2 be a curve tracing ∂Ω0, parametrized by the arc length,
and let ν : [0, L] → S1 be the inwards unit normal. Given ξ ∈ C2

closed([0, L])
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define γε(t) := γ(t) + εξ(t)ν(t) and let Ωε be the bounded connected compo-
nent of R2 \ image(γε). If

∫ L
0
ξ(t)dt = 0 then d

dε

∣∣
ε=0

area(Ωε) = 0. Hence be
minimality it must be d

dε

∣∣
ε=0

length(Ωε) = −
∫ L

0
κg(t)ξ(t)dt = 0. Since ξ is an

arbitrary average zero smooth function we deduce that κg ≡ κ = constant
or equivalently γ′′ ≡ κν. This easily implies that γ traces a circle with radius
1/κ.

b) Reparametrize f(R2) as f̃(x) = f(Ax), where A is a matrix with
nonzero determinant, so that g0 = Id, so |gx − Id| ≤ Cr for |x| < r. Then,
area(f̃(Br(0))) = πr2(1 + o(1)) and length(f̃(∂Br(0))) = 2πr(1 + o(1)). It
follows that

I(f̃(Br(0)) =
√

4π + o(1) as r ↓ 0.

Since by assumption Ω0 is a minimizer of I it must be I(Ω0) ≤ I(f̃(Br(0))
for all r > 0 and hence I(Ω0) ≤

√
4π.

As in a) —now using thatM is homeomophic to R2—, ∂Ω0 must consist of
only one simple closed curve f◦γ. Let us take γ oriented counterclockwise and
let ν(t) be the unit normal to ∂Ω0 at (f ◦ γ)(t) pointing towards the interior
(as in the Gauss-Bonnet setting). Define (for ε small) γε(t) := γ(t) + εν(t),
and let Ωε be the bounded connected component of M \ image(γε). Let us
show that show that d

dε

∣∣
ε=0
I(Ωε) ≤ 0, and < 0 unless K ≡ 0 in Ω0.

Indeed, on the one hand d
dε

∣∣
ε=0

area(Ωε) = −length(∂Ω0). On the other
hand, d

dε

∣∣
ε=0

length(∂Ωε) = −
∫
∂Ω0

κgds

Now, using Gauss-Bonnet,
∫
∂Ω0

κgds = 2π −
∫

Ω0
KdA ≥ 2π (>2π unless

K ≡ 0). Hence,

d
dε

∣∣
ε=0
I(Ωε) =

d
dε

∣∣
ε=0

length(∂Ωε)

area(Ω0)
1
2

− 1

2

length(∂Ω0) d
dε

∣∣
ε=0

area(Ωε)

area(Ω0)
3
2

≤ (<)− 2π

area(Ω0)
1
2

+
1

2

length(∂Ω0)2

area(Ω0)
3
2

= − 2π

area(Ω0)
1
2

+
1

2

I(Ω0)2

area(Ω0)
1
2

≤ 0,

since I(Ω0)2 ≤ 4π. This contradicts the minimality of Ω0 unless the second
inequality is an equality, which implies that K ≡ 0 in Ω0.
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3. Weyl’s tube formula

Let U ⊂ R2 be open and f : U → R3 be an immersion with Gauss map
ν : U → S2 ⊂ R3. Suppose that there is r◦ > 0 such that for every point of
the surface p ∈ f(U), the points q+, q− ∈ R3 defined as q± := p± r◦ν(p) are
such that the Euclidean balls Br◦(q±) ⊂ R3 satisfy f(U)∩Br◦(q±) = {p} (in
particular the balls are tangent to the surface at p). For ε ∈ R with |ε| < r◦
and t ∈ (−ε, ε) define:

f t(x, y) := f(x, y) + tν(x, y).

a) Show that the first fundamental form gtij of f t satisfies√
det(gtij(x, y)) =

(
1− 2tH(x, y) + t2K(x, y)

)√
det(gij(x, y)),

where H = 1
2
(κ1 + κ2) and K = κ1κ2 are respectively the mean and

Gauss curvature of f at the point (x, y) (here κi denote the principal
curvatures), and where gij := g0

ij is the first fundamental form of f .

b) For f , r◦, as above show that the volume of the “cylinder”
{
f t(x, y) :

(x, y) ∈ U, t ∈ (−ε, ε)
}
, ε ∈ (0, r◦) is given by∫∫

U

(
2ε+ 2

3
ε3K(x, y)

)√
det(gij(x, y)) dx dy.

c) Prove Weyl’s tube formula: let Σ be a closed submanifold2 of R3, then
for all ε > 0 sufficiently small, the volume of the “tube”

{p ∈ R3 : dist(p,Σ) < ε},

is given by

2A(Σ)ε+
4π

3
χ(Σ)ε3.

Here A(Σ) and χ(Σ) denote respectively the area and the Euler cha-
racteristic of the surface.

2That is, a compact submanifold without boundary, for example a sphere or a torus.
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Solution: a) Given z = (x, y) ∈ U choose and orthonormal basis e1, e2 of
(TUz, gz) consisting of eigenvectors of the Weingarten map Lz. In the new
coordinates (f̃(x1, x2) =: f(z+x1e1+x2e2)) we have ∂iν̃(0) =

∑2
k=1 h̃

k
i·∂kf̃ =

−κi∂if and hence ∂if̃ ti = ∂if̃i(1− tκi). Therefore

g̃tij(0) = 〈∂if̃ t(0), ∂j f̃
t(0)〉 = (1− tκi)(1− tκj)∂if̃(0), ∂j f̃(0)〉

= (1− tκi)(1− tκj)g̃ij(0).

Hence, using g̃ij(0) = δij we obtain det(g̃tij(0)) = (1− κ1)2(1− tκ2)2 and
so, after performing the change of basis

det(gt(z)) = (1− κ1)2(1− tκ2)2det(g(z)).

Taking the square root we conclude.

b) Consider the injective smooth parametrization of the cylinder

F (x, y, t) := f(x, y) + tν(x, y)

with (x, y, t) ∈ U × (−ε, ε).
Observe that

| det(DF (x, y, t))| = |(∂xF × ∂yF ) · ∂tF | = |(∂xf t × ∂yf t) · ν| =
√

det(gt(z))

Therefore, using a) the volume of the cylinder is given by∫∫
U

∫ ε

−ε

(
1− 2tH(x, y) + t2K(x, y)

)√
det(gij(x, y)) dtdx dy.

Integrating first with respect to the variable t (for fixed (x, y) ∈ U) we obtain
the desired formula.

c) Since Σ is a closed (compact) orientable surface it admits some finite
Atlas {(Vα, ψα)}, where Vα ⊂ Σ are open sets and ψα : Vα → Uα ⊂ R2. Also,
by compactness, there is r◦ > 0 such that every point p ∈ Σ admits tangent
Euclidean balls of radius r◦ whose intersection with Σ is {p} from both sides
Notice that fα := ψ−1

α are embeddings of finitely many open pieces of Σ
which cover all of Σ.

For V ⊂ Σ and ε ∈ (0, r◦), let Cε(V ) denote the “cylinder above V ” defined
as Cε(V ) :=

{
p+ tν(p) : p ∈ V, t ∈ (−ε, ε)

}
,

By b), if V is any open subset of some of the Vα we have

|Cε(V )| =
∫
V

(2ε+ 2
3
Kε3)dA,
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where we denote by |E| the volume of a measurable subset E ⊂ R3.
Now, thanks to the inclusion exclusion principle∣∣∣∣∣
N⋃
α=1

Ei

∣∣∣∣∣ =
N∑
α=1

|Eα| −
∑

1≤α<β6N

|Eα ∩ Eβ|+
∑

16α<β<γ6N

|Eα ∩ Eβ ∩ Eγ|

− · · · + (−1)N+1 |E1 ∩ · · · ∩ EN | ,

we can apply the formula from b) to each Cε(Vα), to the intersections Cε(Vα∩
Vβ) = Cε(Vα) ∩ Cε(Vβ), and all other possible intersection as well, to obtain

|Cε(Σ)| =
∫

Σ

(2ε+ 2
3
Kε3)dσ = 2εA(Σ) + 2

3
ε3

∫
Σ

K dA

Since by Gauss-Bonnet we have
∫

Σ
KdA = 2πχ(Σ) we conclude.
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Differential Geometry I
Repetition exam (multiple choice part)

1. Assume that a (smooth, nonempty) 2-dimensional submanifold M ⊂ R3 is homeomor-
phic to the sphere and satisfies

∫
M
H2 dA = 4π, where H is the mean curvature1. Then M

must be isometric to a/an:

√
(a) sphere.

(b) closed minimal surface.

(c) ellipsoid.

(d) Willmore’s torus.

(e) small smooth perturbation of the sphere.

Solution. If k1, k2 denote the principal curvatures of M , then K = k1k2 and H =
1
2
(k1 + k2). We compute

4H2 = (k1 + k2)
2 = k21 + k22 + 2k1k2 = (k1 − k2)2 + 4K

Hence 4π =
∫
M
H2 ≥

∫
M
K = 2πχ(M) = 4π(1− g), where g is the genus of the connected

closed surface M . Since g = 0 (M homeomorphic to a sphere) we must have k1 = k2 at
every point. That is every point must be umbilical. Hence (see Theorem 4.6 in the lecture)
the surface must be isometric to a sphere.

2. Consider the differential 2-form ω = −ydx∧ dz in R3. Let D be the ellipsoid {(x, y, z) :
(x/a)2 + (y/b)2 + (z/c)2 ≤ 1}, where a, b, c ∈ R \ {0}. Then

∫
∂D
ω equals:

√
(a) 4

3
π|abc|.

(b) π
√
a2 + b2 + c2.

(c) 4π.

(d) π cos a cos b cos c

(e) π cosh a cosh b cosh c.

Solution. By Stokes’ theorem
∫
∂D
ω =

∫
D
dω =

∫
D
dx ∧ dy ∧ dz, that is the volume of

D. Since the three semiaxis of the ellipsoid are |a|, |b|, |c| its volume is 4
3
π|abc|.

1The average of the principal curvatures.
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3. Let C ⊂ R3 be the cylinder in R3, parametrized as

f(u, v) =
(
R cos(u+ v), R sin(u+ v), v

)
,

R > 0. What are the correct values of the Gauss curvature K and the mean curvature H
at the point (R, 0, π) ∈ C (with respect to the outward pointing Gauss map)?

(a) K = 0, H = 0.

√
(b) K = 0, H = − 1

2R
.

(c) K = 0, H = 1
2R

+ 1.

(d) K = 2
R2 , H = 1

R
.

(e) K = 0, H = −R/2.

Solution Being a cylinder of radius R, at any point the principal curvatures are k1 =
−1/R and k2 = 0. Thus K = 0 and H = − 1

2R
.

4. Let M ⊂ R3 be the smooth surface as depicted:

What is the value of the integral of the Gauss curvature K over M (with respect to the
differential of the area)?

(a) −3π.

(b) 0.

(c) depends on how M is embedded in R3.

(d) −6π.

√
(e) −8π.

Solution The sketch shows a genus three surface, so its Euler characteristic is 2(1-3)
= -4. Hence, by Gauss-Bonnet

∫
M
KdA = 2πχ(M) = −8π.
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5. Consider the circle in the sphere S2 whose points are at (geodesic) distance R ∈ (0, π/2)
from the north pole. Its length and geodesic curvature (at any of its points) are, respectively

√
(a) 2π sinR, cotR.

(b) 2πR, cosR
R

.

(c) 2πR, 1/R.

(d) 2π sinR, tanR.

(e) 2π sinR, cosR.

Solution The radius of the planar disc spanned by the circle is sinR, so its length
2π sinR. Its total curvature is hence 1/ sinR but since the angle between the acceleration
vector and the tangent plane is R the geodesic curvature is cosR/ sinR.

6. The area of the spherical cap (containing the north pole) enclosed by the circle in the
previous question is:

√
(a) 2π(1− cosR).

(b) 4π sin(R/2).

(c) π sin2R.

(d) π tan2R.

(e) π cotR.

Solution Calling C the spherical cap we have, by Gauss-Bonnet A(C)+2π sinR cotR =∫
C
KdA+ L(∂C)κg = 2πχ(C) = 2π.

3
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7. Consider the torus of revolution

f(x, y) =
(

cosx(−R + r cos y), sinx(−R + r cos y), r sin y
)
,

R > r > 0, drawn below:

Its mean curvature (with respect to the outward pointing Gauss map) at p = (−R−r, 0, 0)
is:

(a) −1
2

(
1
r

+ 1√
R2−r2 )

(b) −1
2

(
1√
rR

+ 1
R−r ).

√
(c) −1

2

(
1
r

+ 1
R+r

).

(d) −1
2

(
1
r
− 1

R+r
).

(e) −1
2

(
1
r
− 1√

R2−r2 ).

Solution At the point p both principal curvatures have the same sign. One corresponds
to the meridian and equals −1

r
(the meridian has radius r). The other corresponds to the

parallel through p, which is a geodesic (by symmetry) traces a circumference of radius
R+r, so the curvature gives − 1

R+r
. Then mean curvature is its average of the two principal

curvatures computed before.
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8. Consider again the torus from the previous question. At any point of the torus one
principal curvature is −1/r. The other principal curvature at the point q = (−R +
r cosα, 0, r sinα) is:

√
(a) cosα

R−r cosα

(b) cosα
R−r

(c) tanα
R−r

(d) cosα
R−r sinα

(e) tanα
R+r

Solution The principal curvature −1
r

corresponds to the meridians. To compute the
principal curvature in the orthogonal direction at q we consider the circumference γ(t) =
(cos t(−R + r cosα), sin t(−R + r cosα), r sinα). Its curvature is 1/(R − r cosα), so after
projecting (the normal vector to the circumference at q points in the (1,0) while the normal
to the surface is (cosα, sinα) at q) we obtain that the normal curvature is cosα

R−r cosα direction.
Since γ is a curve trough q contained in the surface and velocity vector orthogonal to the
other principal direction, its normal curvature is precisely the principal curvature we are
trying to compute.

9. Consider again the torus from the previous two questions. When the point q is ro-
tated about the x3-axis, it generates the curve γ(t) = (cos t(−R + r cosα), sin t(−R +
r cosα), r sinα), which is contained in the torus. Given a tangent vector X at q consider
its parallel transport along γ for one full turn (t ∈ [0, 2π]), producing a new tangent vector
Y at q. The angle between X and Y is:

(a) αR
r

√
(b) 2π sinα

(c) tanαR
r

(d) 2π cosα

(e) sinα

Solution Consider the cone tangent to the torus along γ. It is a cone of revolution
(also with respect the x3 axis) and the angle of its generating lines of the cone and the x3
axis is sinα. Hence when “opening” the cone (as we saw in the lecture in the it becomes
a flat example of Foucault’s pendulum) it becomes a flat circular sector of angle 2π sinα.
Hence, since parallel transport is trivial for the flat surface, we see that the angle between
the transported vector and the original one is 2π sinα.
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