For a chant (φ, V) of M around p, (anoricel derivations $\left.\quad \frac{\partial}{\partial \varphi^{\prime}}\right|_{p}$ at $p \quad i=1, \ldots, m$
defined by

$$
\left.\frac{\partial}{\partial \varphi^{j}}\right|_{p}(f):=\frac{\partial f}{\partial \varphi^{j}}(p):=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}}(\varphi(p))
$$

[8.10 Prop The set of all derivations at $p \in M \quad\left(c^{\infty}\right)$ forms an m-dim vector space.
If Y is a chert around P, then

$$
\left.\frac{\partial}{\partial \varphi^{\prime}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial \varphi^{m}}\right|_{p} \text { is a basis, }
$$

and any derivation X at p is of the form

$$
\begin{equation*}
x=\left.\sum_{j=1}^{m} x\left(\varphi^{j}\right) \frac{\partial}{\partial \varphi^{j}}\right|_{p} \tag{*}
\end{equation*}
$$

proof : $\left.\frac{\partial}{\partial y j}\right|_{p}$ are lin. indep.

$$
\begin{aligned}
\left.\sum_{i=1}^{m} \lambda^{j} \frac{\partial}{\partial} \varphi^{j}\right|_{p}=0 \quad 0=\sum_{j=1}^{m} \lambda^{j} \frac{\partial \varphi^{i}}{\partial \varphi^{j}}(p) & =\sum_{j=1}^{m} \lambda^{j} \delta_{j}^{i} \\
& =\lambda^{i}
\end{aligned}
$$

- Show (*). Assume w. log $Y(p)=0$

Then, in ubhed of p, any t has a representation

$$
f(q)=f(p)+\sum_{i=1}^{m} f_{i}(q) \varphi^{i}(q) \quad \text { where } \quad f_{i} \in C^{\infty}(M)_{p}
$$

Indeed $h:=f \circ \varphi^{-1}, \quad \varphi(q)=: x$

$$
\begin{aligned}
h(x)-h(0) & =[h(t x)]_{t=0}^{t=1}=\int_{0}^{1} \frac{d}{d t}[h(t x)] d t \\
& =\int_{0}^{1} \frac{\partial h}{x^{i}}(t x) \frac{d\left(t x^{i}\right)}{d t}=\sum_{i} x^{i} \underbrace{\int_{0}^{1} \frac{\partial h}{\partial x^{i}}(t x)}_{h_{i}(x)}
\end{aligned}
$$

Take $f_{i}:=h_{i} \cdot \varphi$.
Notice $q=p \quad x=0 \quad h_{i}(0)=f_{i}(p)=\frac{\partial h}{\partial x^{i}}(0)=\frac{\partial f}{\partial \varphi^{i}}(p)$
Now

$$
\begin{aligned}
\left.\frac{\partial}{\partial \varphi j}\right|_{p}(f) & =\left.\frac{\partial}{\partial \varphi^{j}}\right|_{p}\left(\sum_{i} f_{i} \varphi^{i}\right) \\
& =\left.\sum_{i} \frac{\partial}{\partial \varphi i}\right|_{p} f_{i} \underbrace{\varphi^{i}(p)}_{0}+f_{i}(p) \delta_{j}^{i}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \left.\frac{\partial}{\partial \varphi^{j}}\right|_{p} f=f_{i}(p)=\frac{\partial f}{\partial \varphi^{j}}(p) \\
X(f) & =X\left(\sum_{j} f_{i} \varphi^{j}\right)=\sum_{j} X\left(f_{j}\right) \underbrace{\left(\varphi^{j}(p)\right.}_{0}+f_{j}(p) x\left(\varphi^{j}\right) \\
& =\sum_{j} X\left(\varphi^{j}\right) \frac{\partial f}{\partial \varphi^{j}}(p) \\
& =\left.\sum_{j} x\left(\varphi^{j}\right) \frac{\partial}{\partial \varphi^{j}}\right|_{p}(f)
\end{aligned}
$$

Identificetion tongent spoce \longleftrightarrow derirctions M is c^{∞} muld, we identify $x \in T M_{p}$ (Def r.4) with the denirction

$$
\begin{aligned}
& X(f): \stackrel{(*)}{=} d f_{p}(x) \in \subset \mathbb{R}_{f(p)} \cong \mathbb{C} \\
& \text { Fon } \quad x=[\varphi, \xi]_{p} \\
& d f_{p}(x)=d f_{p}\left([\varphi, \xi]_{p}\right) \stackrel{\stackrel{d}{=}}{=}\left[i d_{R}, d\left(f \circ Y^{-1}\right)_{P(p)}(\xi)\right]_{f(p)} \\
& \stackrel{\theta}{-} d\left(f \circ \varphi^{-1}\right)_{\varphi(p)}(\xi)=\sum_{j} \frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{j}}\left(\varphi(p) \xi^{j}\right. \\
& =\underbrace{\left.\sum_{X} \xi^{i} \cdot \frac{\partial}{\partial \varphi^{j}}\right|_{p}}_{X}(f)
\end{aligned}
$$

For $F: M^{m} \longrightarrow N^{n} c^{\infty}, \quad x \in T M_{p}$, $f \in C^{\infty}(N)$, we hene

$$
\begin{aligned}
d F_{p}(X)(f) & \stackrel{(x)}{=} d f_{F(p)}\left(d F_{p}(x)\right) \\
& =d(f \circ F)_{p}(x) \stackrel{(*)}{=} X(f \circ F)
\end{aligned}
$$

$c: I \rightarrow M c^{\infty} \quad c^{\prime}(t) \in T M_{c(t)}$ as dariration

$$
c^{\prime}(t)(f)=d f_{((t))}\left(c^{\prime}(t)\right)=(f \cdot c)^{\prime}(t)
$$

Differetial forms (and Stake's then)

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)+\text { terminology }
$$

$$
\begin{aligned}
& \Lambda^{S}\left(\mathbb{R}^{n *}\right):=\underset{\substack{\text { vector sps }}}{\substack{\text { mace of alteneting }}} \stackrel{s \text {-linem }}{=} \\
& \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{\underline{S}} \longrightarrow \mathbb{R} \\
& f\left(\xi_{\sigma(1)}, \ldots, \xi_{\sigma(s)}\right)=\operatorname{sgn}(\sigma) f\left(\xi_{1}, \ldots, \zeta_{s}\right) \\
& \text { Inparticulan } \Lambda^{\circ}\left(\mathbb{R}^{n *}\right)=\mathbb{R}, \quad \Lambda^{s}\left(\mathbb{R}^{n *}\right)=0, s \geqslant n+1
\end{aligned}
$$

Exterion product

$$
\begin{aligned}
& \alpha \in \Lambda^{s}\left(\mathbb{R}^{n *}\right), \beta \in \Lambda^{t}\left(\mathbb{R}^{n *}\right) \quad t \geqslant 0 \\
& \alpha \wedge \beta \in \Lambda^{s+t}\left(\mathbb{R}^{n *}\right) \\
& (\alpha \wedge \beta)\left(\xi_{1, \ldots}, \zeta_{s+t}\right):= \\
& \therefore=\sum_{(s, t)-\text { shuthles }} \operatorname{sgn}(\sigma) \alpha\left(\xi_{\sigma(1), \ldots,} \xi_{\sigma(s)}\right) \beta\left(\xi_{\sigma(s+1)}, \ldots, \xi_{\sigma(s+t)}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\left\{\sigma \in s_{s+t} \mid\right. & \sigma(1)<\sigma(2)<\ldots \sigma(s), \\
& \sigma(s+1)<\sigma(\sigma+2)<\ldots<\sigma(s+t)\}
\end{array}
$$

Propaties \wedge bilinear

- $a \in \Lambda^{0}\left(\mathbb{R}^{h *}\right) \cong \mathbb{R} \quad a \wedge \alpha=a \alpha$
- $\alpha \wedge \beta=(-1)^{\text {st }} \beta \wedge \alpha$ $\left(\forall \alpha \in \mathbb{N}^{s}\left(\mathbb{R}^{h x}\right)\right)$
- $(\alpha \wedge \beta) \wedge \gamma=\alpha \wedge(\beta \wedge \gamma)$
$\varphi_{1}, \ldots, e_{n}$ denote canonical basis of \mathbb{R}^{h} $e^{\wedge}, \ldots, e^{n}$ dual basis, i.e $e^{i}\left(e_{j}\right)=\delta_{j}^{i}$
Every $\alpha \in \Lambda^{s}\left(\mathbb{R}^{n *}\right)$ has the representation \rightarrow By define $e^{i} \in \mathbb{R}^{n *}=\Lambda^{\wedge}\left(\mathbb{R}^{n *}\right)$

$$
\begin{aligned}
& \alpha \underset{(*)}{=} \sum_{1 \leqslant i_{1}<i_{1}<\cdots<i_{s} \leqslant n} \alpha_{i_{1}, \ldots, i_{s}} e^{i_{1}} \wedge \cdots \wedge e^{i s} \\
& \alpha\left(e_{i_{1}, \ldots,} e_{i s}\right) \quad i_{1<i_{2}} \ldots i_{s} \\
& e^{i_{\wedge}} \wedge \cdots \wedge e^{i_{s}}\left(\xi_{1}, \ldots, \xi_{s}\right)=\operatorname{det} \underbrace{\left(e^{i_{\alpha}}\left(\xi_{\beta}\right)\right)}_{1 \leqslant \alpha, \beta \leqslant s}
\end{aligned}
$$

PRef'n A differaticl form w of depree $s \geqslant 0$ on $U \subset \mathbb{R}^{n}$ open is a map $U \rightarrow \Lambda^{s}\left(\mathbb{R}^{n *}\right)$ such thet giren any s-tuple of rectors

$$
\left(\xi_{1}, \ldots \xi_{s}\right) \in\left(\mathbb{R}^{n}\right)^{s}
$$

$X \longmapsto \omega_{x}\left(\xi_{1}, \ldots, \xi_{j}\right)$ is smooth $\left(c^{\infty}\right)$
As a cousey. if $\xi_{1}, \ldots \xi_{S} \in C^{\infty}\left(U, \mathbb{R}^{n}\right)$

$$
\begin{gathered}
w\left(\xi_{1}, \ldots, \xi_{s}\right): U \longrightarrow \mathbb{R} \\
i i \\
w_{x}\left(\xi_{1}(x), \ldots, \xi_{s}(x)\right)
\end{gathered}
$$

Deferential d of scolan fo'n as a difl form of deg 1

$$
\begin{aligned}
& \text { If } f: V \rightarrow \mathbb{R} \text { smith } \\
& d f:=1 \text {-diff form } \\
& \xi \in \mathbb{R}^{n} \underset{\substack{\text { 1-fom } \\
\left(d f_{x}\right.}}{(\xi)}=\underbrace{d f_{x}(\xi)}_{\text {usual inferential! }} \\
& f=x^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& d x^{i}=e^{i} \Leftrightarrow d x^{i}\left(e_{j}\right)=\delta_{j}^{i}
\end{aligned}
$$

\rightarrow From now on representations of s-forms will be of the type $\sin \left(x^{1} x^{2}\right) d x^{\prime} \wedge d x^{2}$

Denote $\Omega^{S}(U), U \subset \mathbb{R}^{n}$ open, the space of diff forms of dogs on U
For all $w \in \Omega^{s}(U)$ we here

$$
\omega=\sum_{1 \leq i_{1} \cdots c i_{s} \leqslant n} \overbrace{\omega_{i_{1}, \cdots i s}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{s}}
$$

"briefly"

$$
\stackrel{w_{1}^{\prime \prime}}{=} \sum_{I} w_{I} d x^{I} \quad\left\{\begin{array}{l}
I=\left(i_{1}, \ldots, i s\right) \\
i_{1}<\cdots<i s
\end{array}\right.
$$

As before

$$
w_{i_{1}, \sim i s}=w\left(e_{i_{1}}, \ldots, e_{i s}\right)
$$

Theorem (exterion derivative) \exists unigue sequence of linear opercitors

$$
d: \Omega^{s}(u) \rightarrow \Omega^{s+1}(u) \quad s \geqslant 0
$$

with the following properties:
(1) Fon $f \in \Omega^{0}(u)=C^{\infty}(u) \quad d f$ is the whal differenticl
(2) $\left.d \cdot d=0 \quad\left(\forall f \in \Omega^{s}(u), d(d f)\right)=0 \in \Omega^{s+2}\right)$
(3) $d(w \wedge \theta)=d w \wedge \theta+(-1)^{5} w \wedge d \theta$
whenver $w \in \Omega^{s}(v), \theta \in \Omega^{t}(v)$
(4) $d\left(\left.w\right|_{V}\right)=\left.d w\right|_{V} \quad \forall V \subset V$ open

$$
t^{c^{\infty}(v)=\Omega^{0}(v)}
$$

prof
Unipueners $\quad \omega=\sum_{J} w_{J} d x^{I}=\sum_{J} w_{I} \wedge d x^{J}$
(1) $+(3)$

$$
d w \stackrel{\perp}{=} \sum_{J} d w_{\mathcal{I}} \wedge d x^{J}+(-1)^{0} w_{I} \wedge \underbrace{d\left(d x^{I}\right)}_{\equiv 0}
$$

(1)

$$
\stackrel{(*)}{=} \sum_{\left.1 \leqslant i_{1}<\cdots<i\right) \leqslant n} d w_{i_{1},-i_{s}} \wedge d x^{n_{1}} \wedge \cdots \lambda d x^{i_{s}}
$$

existence
Define d acarding to (*) (and (1)) check thet it satisties (1) - (4)

$$
\text { (2) } \begin{aligned}
w & =f d x^{I} \text { on } U \\
d w & =\underbrace{d f} \wedge d x^{I}=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{I} \\
d(d w) & =\sum_{i j=1}^{n} \frac{\partial f}{\partial x^{2} \partial x^{i}} \underbrace{d x^{i} \wedge d x^{i} \wedge d^{I}}_{-d x^{i} \wedge d x^{j}}=0
\end{aligned}
$$

Def'n $F: \bigcup_{\hat{\mathbb{R}}^{n}} \longrightarrow \hat{\mathbb{R}}^{m} \quad c^{\infty} \quad \omega \in \Omega^{s}(v)$
Pullback form $F^{*} \omega \in \Omega^{s}(U)$

$$
\left(F^{*} \omega\right)_{x}\left(\xi_{1}, \ldots, \zeta_{s}\right)=\omega_{F(x)}\left(d F_{x}\left(\zeta_{1}\right), \ldots, d F_{x}\left(\xi_{s}\right)\right)
$$

In panticulan if $\omega=f \in C^{\infty}(v)$-porn $F^{*} \omega=\omega \circ F$

Poposition $F: U \rightarrow V \quad C^{\infty}$ (as above) $w \in \Omega^{S}(v), \theta \in \Omega^{t}(v)$. Then: $(a, b \in \mathbb{R})$
(0) $F^{*}(a w+b \theta)=a F^{*} w+b F^{*} \theta$ if $s=t$!
(1) $F^{*}(w \wedge \theta)=F^{*} w \wedge F^{*} \theta$
(2) $F^{*}(d w)=d\left(F^{*} w\right)$
pot Hint for (2). Prove it first for
$w=f \in C^{\infty}(v)=\Omega^{\circ}(v) \quad$ chain rule

$$
(d(f \circ F)=d F \circ d F)
$$

use induction over $s \geqslant 0$ and thu of exterior donirctive.

Integration of forms and Stokes' the
Baby ration of Stokes' $U C \mathbb{R}^{m}$ open $f \in C_{c}^{\infty}(u)$
(1) $\int \frac{\partial f}{\partial x^{\prime}} d x^{\prime} \ldots d x^{m}=\int f d x^{2} \ldots d x^{m}$ LBS

(2) $\int_{V \cap\left\{x^{2} \cos \right.} \frac{\partial f}{\partial x^{i}} d x^{n} \cdots d x^{m}=0 \quad$ Fund the colculus
ploof (1)LHS $\stackrel{\text { Funbini }}{=} \int_{[-L, L)^{m-1}} d x^{2} \cdots d x^{m} \int_{-L}^{0} d x^{\prime} \frac{\partial f}{\partial x^{1}}=\int_{[-L, L]^{m-1}} d x^{2} \cdots d x^{m} f\left(0, x^{x},-x^{m}\right)$
(2) Exencenci)

Def'n A subset $M \subset \mathbb{R}^{n}$ is a m-ain ovientable submelld with bdry of \mathbb{R}^{n} if $\forall p \in M, \exists V \subset \mathbb{R}^{n}$ open ubhd of P an a poritive Q diffeomeaphisme $\varphi: V \rightarrow U$ outo an oper set $U \subset \mathbb{R}^{n}$ such thet $\left[\operatorname{det}\left(d p_{p}\right)>0\right.$ $\forall p,(v, \varphi)$

$$
\varphi(M \cap V)=\left(\mathbb{R}^{m} \times\{0\}\right) \cap V \cap\left\{x^{\prime} \leq 0\right\}
$$

$$
\partial M:=\left\{p \in M: \varphi(p) \in\left\{x^{\prime}=0\right\} \cap\left\{R^{m} \times\{0\}\right\}\right.
$$

smoth mentorl of dim $m-1$
Def'y Let $w \in \Omega^{m}\left(\mathbb{R}^{n}\right)$ and $M \subset \mathbb{R}^{n} m$-dim owientable subufld (passibly with ∂). We say thet w is integreble oven M it $\exists\left(V_{\alpha}, \varphi_{\alpha}\right)$ submerifold "atlas"

$$
\text { (i.e } \left.U_{\alpha} V_{\alpha} \supset M\right)
$$

and λ_{α} pantition of mity suboudn. to $\left\{V_{\alpha}\right\}$ st

$$
\begin{aligned}
& \sum_{\alpha} \int_{W_{\alpha} \times\{04}\left|\left(\varphi_{\alpha}^{-1}\right)^{*}\left(\lambda_{\alpha} \omega\right)\left(e_{1}, \ldots, e_{m}\right)\right| d x^{\prime} \ldots d x^{m}<\infty \\
& W_{\alpha} \times\left\{04=\left(\mathbb{R}^{m} \times\{04) \cap U_{\alpha} \cap\left\{x^{\wedge} \leq 0\right\} \quad W_{\alpha} \subset \mathbb{R}^{m}\right.\right.
\end{aligned}
$$

If ω is integreble oven M, then:

$$
\int_{M} w:=\sum_{\alpha} \int_{W_{\alpha \times 405}}\left(\varphi_{\alpha}^{-1}\right)^{*}\left(\lambda_{\alpha} w\right)\left(e_{1, \ldots} e_{m}\right) d x^{\prime} \ldots d x^{m}
$$

fint m rece of canoric basis of \mathbb{R}^{n}
\rightarrow Let us check if only depends on M, w

1. w has cot. support in V and

$$
\begin{aligned}
& V \varphi^{\varphi} \cup\left(x^{1}, \ldots x^{n}\right) \quad \bar{x}:=\left(x^{1}, \ldots, x^{m}\right) \\
& \left(y^{\prime},--y^{n}\right) \quad \bar{y}:=\left(y^{\prime} ; \cdots, y^{m}\right) \\
& \int\left(\varphi^{-1}\right)^{*} w_{(\bar{x}, 0)}\left(e_{1} \ldots e_{m}\right) d \bar{x} \stackrel{?}{=} \\
& \left\{\bar{x}:(\bar{x}, 0) \in U, x^{\prime} \leq 0\right\}=: W \subset \mathbb{R}^{m} \\
& \stackrel{(2)}{=}\left(\tilde{\varphi}^{-1}\right)^{\times} \omega(5,0)(e, \ldots, l n) d \bar{y}
\end{aligned}
$$

Let $\psi=\tilde{\varphi} \cdot \varphi^{-1}: U \rightarrow \tilde{U}$
Notice $\psi(\bar{x}, 0) \in \mathbb{R}^{m} \times\{0\}$
So, we con define $\hat{\psi}: W \rightarrow \widetilde{w}$ as $\psi(\bar{x}, 0)=(\hat{\psi}(\bar{x}), 0)$
By deft of pult-beck
m me
$\underset{\substack{\text { me } \\ \text { and lei altumbing }}}{=}=\operatorname{det}\left(d \hat{\psi}_{\bar{x}}\right)\left(\left(\tilde{\varphi}^{-1}\right)^{*} \omega\right)_{\left(\hat{\psi}_{(\bar{x}), 0)}\right.}\left(e_{1}, \ldots, e_{m}\right)$
hence, doteminests

Therepore,

$$
\begin{aligned}
& \int_{W}\left(\left(\varphi^{-1}\right)^{x} \omega\right)_{(\hat{x}, 0)}\left(e_{1}, \ldots e_{m}\right) d \bar{x}= \\
& =\int_{W}{\operatorname{det}\left(d \hat{\psi}_{\bar{x}}\right)}^{\left(\left(\tilde{\varphi}^{-1}\right)^{*} \omega\right)_{(\hat{\psi}(\bar{x}), 0)}\left(e_{1}, \ldots e_{m}\right) d \bar{x}} \\
& \psi(\tilde{w})=W \\
& f(\underbrace{\hat{\psi}(\bar{x})}_{\bar{y}})
\end{aligned}
$$

where

$$
\begin{aligned}
f(\bar{y}) & \left.:=\left(\tilde{\varphi}^{-1}\right)^{*} \omega\right)_{(\overline{5}, 0)}\left(e_{1}, \ldots, e_{m}\right) \\
\bar{y} & =\hat{\psi}(\bar{x})
\end{aligned}
$$

2. (exenise) $\int_{M} w$ independent of $\left(V_{\alpha}, Y_{\alpha}\right), \lambda_{\alpha}$

$$
\{\lambda \alpha\}_{\alpha},\left\{\mu_{\beta}\right\}_{p} \text { pat. nity } \Rightarrow\left\{\lambda_{\alpha} \mu_{\beta}\right\}_{\alpha \beta}
$$

"Natmal" ovientetion of JM (M onierted)

$$
\begin{aligned}
& p \in \partial M, \quad p \in V \quad \varphi: V \rightarrow U \\
& \varphi(p)=\left(0, x^{2}, \ldots x^{m}, 0, \ldots 0\right) \quad(\text { def' } n \text { of } \partial M)
\end{aligned}
$$

$$
\left\{d\left(\varphi^{-1}\right)_{\varphi(p)}\left(e_{i}\right): 2 \leq i \leq m\right\}
$$

define as postive basis of $T(\partial M)_{p}$
Inm (generelited stokes) $\quad M \subset \mathbb{R}^{n}$ orientable m-dim subufld with $\partial, W \in \Omega^{m-1}(M)$ st
$\left\{\begin{array}{l}w \text { integeble on } \partial M \\ d w \text { integeste on } M\end{array}\right.$
Then, $\quad \int_{M} d \omega=\int_{\partial M} \omega$
ploof case 1-w ept spt in $V \quad \varphi: V \rightarrow U$ is subuuld chert

$$
\begin{aligned}
& \int_{M(\sim v)} d \omega \stackrel{\mu t}{=} \int_{\mathbb{R}^{m} \times \cos \cap\left\{x^{\prime} \leqslant 0\right\}}\left(\varphi^{-1}\right)^{*} d \omega\left(e_{1}, \ldots, \rho_{u}\right) d x^{\prime} \ldots d x^{m} \\
& \underset{\substack{\text { pulbuctes } \\
\text { sind }}}{\text { vind }}=\int_{\mathbb{R}^{n} \times 10 \cap \cap\{x \leq 0)} d \underbrace{\left(\varphi^{-1}\right)^{*} \omega}_{\bar{\omega}}\left(e_{1}, \ldots, e_{m}\right) d x^{x} \cdots d x^{m}
\end{aligned}
$$

$\bar{\omega}$ is (m-1) form in $\cup \subset \mathbb{R}^{n}$

$$
\begin{aligned}
\bar{w} & =\sum_{I} \bar{w}_{I} d x^{I} \quad\left(I=\left(i_{1}, \ldots, i_{m-1}\right)\right) \\
d \bar{w} & =\sum_{I} \sum_{i} \frac{\partial}{\partial x_{i}} \bar{w}_{I} d x^{i} \wedge d x^{I}
\end{aligned}
$$

Notice $J=\left(j_{1},-j_{m}\right) \quad j_{1}<j_{2}<\cdots<j_{m}$

$$
d x^{J}\left(e_{1}, \ldots, e_{m}\right)= \begin{cases}1 & \left(j_{1}, \ldots j_{m}\right)=(1,2, \ldots, m) \\ 0 & \text { otherwise }\end{cases}
$$ give 0 when evaluated at $\left(l_{1}, \ldots e_{m}\right)$

$$
\bar{w} \stackrel{(i i)}{=} \sum_{i=1}^{m}(-1)^{i-1} f^{i} d x^{\wedge} \wedge \overbrace{-\wedge d x^{i} \wedge \cdots \wedge d x^{m}}^{\text {ouT }}
$$

+ other terms as above

Theretore, $\int_{M} d w \stackrel{(i)}{=} \sum_{i=1}^{m} \int_{\left\{x^{\prime} \leq 0\right\}} \frac{\partial}{\partial x^{i}} f^{i}\left(x^{\prime}, \ldots, x^{m}, 0,-0\right) d x^{\prime} \ldots d x^{m}$
baby stooks

$$
\stackrel{b y}{=} \int_{\left\{x^{1}=0\right\}} f_{\substack{1 \\ 0}}\left(x^{1}, \ldots x^{m}, 0 \ldots 0\right) d x^{2} \cdots d x^{m}
$$

$\stackrel{(i i)}{=} \int_{\left\langle X^{\prime}=0\right\rangle} \bar{\omega}\left(e_{2}, \ldots, e_{m}\right)$

$$
=\int_{\partial M} w
$$

λ_{α} partition of id
case 2 $\omega=\sum_{\alpha} \lambda_{\alpha} \omega^{\alpha} \quad$ subondineted to $\left\langle V_{\alpha}\right\rangle$ $\left(V_{\alpha}, \varphi_{\alpha}\right)$ subatld Atlas

Then

$$
\begin{aligned}
& \int_{M} d w=\sum_{\alpha} \int_{M} d\left(\lambda_{\alpha} w^{\alpha}\right) \\
& \text { (cose) } \geq \sum_{\alpha} \int_{\partial M} \lambda_{\alpha} w^{\alpha}=\int_{\partial M} w
\end{aligned}
$$

Ch 9 (sard's then \& mepping degree)
A set $A \subset \mathbb{R}^{m}$ har measure zevo on is a null set if $\forall \varepsilon>0 \quad \exists \mathrm{ses}$. of cubse $Q_{i} \subset \mathbb{R}^{m}$ s.t $A \subset U_{i} Q_{i}$

$$
\left.\left.\left.\begin{array}{rl}
\sum_{i}\left|Q_{i}\right|<\varepsilon & (Q
\end{array}\right)\left[x^{\prime}, x^{\prime}+r\right] x\left[x^{2}, x^{2}+r\right] x \ldots x\left[x^{m}, x^{m}+r\right]\right)\right] \text { |Q|}=r^{m} .
$$

The mion of countebly meny null gets is a mull set

$$
\left[\begin{array}{l}
\text { usual } \\
\text { measme } \\
\text { thy thics }
\end{array}\right] \varepsilon / 2, \varepsilon / 2^{2}, 1 \varepsilon / 2^{k} \underset{\sin }{ } \varepsilon
$$

If $V C R^{m}$ is open $F: V \rightarrow R^{m} C^{1}$
$A \subset V$ null $\Rightarrow F(A)$ null
[Pf. $V=\bigcup_{k=1}^{\infty} B_{k} \quad \bar{B}_{k}$ acpt ball, consider $A \cap B_{k}$ an comes $A_{\cap} \bar{B}_{K} \subset \bigcup_{i} Q_{i} \subset K \subset V$ cp at fixed

$$
\begin{aligned}
& F \in C^{1} \quad \Rightarrow F l_{K} \text { lipditz } \\
& \quad \Rightarrow \operatorname{diam}\left(F\left(Q_{i}\right)\right) \leq L \operatorname{diam}\left(Q_{i}\right)
\end{aligned}
$$

(sum over i)

$$
\Rightarrow \quad F\left(A \cap B_{k}\right) \text { is mull }
$$

[9.1 Def A subset A of a C^{r} mild $M, r \geqslant 1$, has marne reno if \forall chat (φ, V) of M
mull $Y(A \cap U)$ hes messing 0
$A \subset M$ mull $\Longleftrightarrow \varphi(A \cap U)$ mill for all charts in some atlas
9.2 thu (Manse 1939, Sard 1942) "Sand', lemme" If $F: M^{m} \longrightarrow N^{n}$ is a C^{r} map with $r>\max \{0, m-n\}$ then the set of singular values of F has meas. zero.
$p t$

We want to show given a cube

$$
\begin{array}{ll}
\text { re want to show given a } \\
\forall Q_{r}\left(x_{0}\right) \subset \varphi(v) & Q_{r}\left(x_{0}\right)=x_{0}+(-r, r)^{m}
\end{array}
$$

Let us show $\sum:=\left\{x \in \overline{Q_{r / 2}\left(x_{0}\right)} \mid d f_{x}=0\right\}$ $(r>0)$
satisties $f(\Sigma)$ null

$$
\Sigma^{*}:=\left\{x \in \Sigma \left\lvert\, \begin{array}{ll}
\frac{\partial^{\alpha} f}{\partial x^{\alpha}}(x)=0 & \forall \alpha=\left(\alpha_{1}, \ldots \alpha_{m}\right) \\
& |\alpha| \leqslant k
\end{array}\right.\right\}
$$

since $f \left\lvert\, \frac{}{Q_{\frac{3 r}{4}}\left(x_{0}\right)}\right.$ is mifounly C^{k}

$$
\forall \varepsilon>0 \quad \exists \delta=\delta(\varepsilon), \quad \forall x, x^{\prime} \in Q_{r / 2}\left(x_{0}\right)
$$

C*) $|f\left(x^{\prime}\right)-\underbrace{f(x)-\sum_{1 \leqslant|\alpha| \leq K} \frac{1}{\alpha!} \frac{\partial^{\alpha \alpha} f}{\partial x^{\alpha}}(x)\left(x^{\prime}-x\right)^{\alpha}}_{\text {Taylor exparsin }}| \leq \varepsilon\left|x^{\prime}-x\right|^{K}$
$(*) \Rightarrow \forall x \in \Sigma^{*}$
(**) $\left|f\left(x^{\prime}\right)-f(x)\right| \leqslant \varepsilon\left|x^{\prime}-x\right|^{k}, \quad\left|x^{\prime}-x\right|<\delta$

Split $\overline{Q_{r / 2}\left(x_{0}\right)}$ into smeller cubes of dianeter $\rho>0$

$$
N \leqslant\left((m)\left(\frac{r}{\rho}\right)^{m}\right.
$$

regulan grid
if $\Sigma^{*} \cap Q_{i} \neq \phi \quad \exists x_{i} \in \Sigma^{*} \cap Q_{i}$
(**) \Rightarrow

$$
\begin{aligned}
& f\left(Z^{*} \cap Q_{i}\right) \subset B_{f\left(x_{i}\right)}\left(\varepsilon \rho^{k}\right) \mathbb{R}^{n} \\
& \subset \text { cube of ride } 2 \varepsilon \rho^{k}=: U \\
& Q_{i}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\left|f\left(\varepsilon^{*} \cap Q_{i}\right)\right| & \leq \sum_{i=1}^{N}\left|Q_{i}^{\prime}\right|=N\left(\varepsilon \rho^{k}\right)^{n} \\
& \leq c(m)(r / \rho)^{m}\left(\rho^{k}\right)^{n} \leq C(m, r) \rho
\end{aligned}
$$

$\rho^{-m} \rho^{k n} \leqslant \rho^{k n-m} \leq \rho \quad k$ lange $\quad \rho \in(0,1)$
i) $k n-m \geqslant 1$
$\Rightarrow f\left(\sum^{*}\right)$ is uull set

By defin of Σ^{*}, if $x \in \sum \backslash \Sigma^{*}$

- $d f(x)$ does not here meximel rank
- $\exists \alpha \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{m} \leq K \quad$ st $\frac{\partial f}{\partial x^{\alpha}}(x) \neq 0$ with $|\alpha|$ mimimal

$$
\begin{aligned}
& \Rightarrow \quad x \in \Gamma_{\alpha}:=\left\{\begin{array}{l}
x \in \varphi(v):= \\
\text { and } \frac{\partial f}{\partial x^{\beta}}=0 \quad \forall \quad|\beta|<|\alpha|
\end{array}\right\} \\
& \left.\begin{array}{l}
\text { Example }
\end{array} \quad \begin{array}{rl}
\Gamma_{\alpha}=\{x: & \frac{\partial f}{\partial x^{\prime} \partial x^{2}}>0, \quad \frac{\partial f}{\partial x^{\prime}}=\frac{\partial f}{\partial x^{2}}=0 \\
\varphi(v) \subset \mathbb{R}^{2}
\end{array}\right\}
\end{aligned}
$$

$\Rightarrow \quad \sum \Sigma^{*} \subset$ Union of codimersion $\geqslant 1$ subverifolds of $\varphi(u)$
induction over w

$$
M^{(m)} \longrightarrow N^{n}
$$

Apply result for C^{∞} maps $M^{m-1} \longrightarrow N^{n}$

Manifold with bay
m-dim c^{∞} unflas with bay ane defined as in 8.1, except that the images of chants $\varphi(v) \subset \mathbb{R}^{m}$ are open in a halfspace $=\left\{x \in \mathbb{R}^{m} \mid x^{\prime} \geqslant 0\right\}=H$

$$
\left\{x \in \mathbb{R}^{m} \mid x^{\prime}=0\right\}=\partial H
$$

Bony of M

$$
\partial M:=\{p \in M \mid \varphi(p) \in \partial H,
$$

for some (hence every) chest Y \}
Tangent space
Let M^{m} be c^{∞} mfd with ∂, for $p \in M$, $T M p$ is defined as in 8.4
Notice that if $p \in \partial M \quad d\left(\psi_{0} \varphi^{-1}\right)_{\varphi(p)}$ still \exists, so we can still define equivalence classes at these pts.
For $p \in \partial M, T(\partial M)_{p}$ is in a cenoricel way a subspace of $T M_{p}$

$$
\left(\left\{[\varphi, \xi]_{p} \mid \xi \in T(\partial H)_{\varphi(p)} \text { far } \varphi: V \rightarrow \varphi(v) c H\right)\right.
$$

The differential $d F_{p}: T M_{p} \longrightarrow T N_{F(p)}$ is defined exactly as in ch. 8 .
$[9.3$ tm (regular value then for melds with ∂) N^{n} mfd with $\partial, Q^{k} m f d, F: N \rightarrow Q C^{\infty}$ If $q \in F(N)$ is a regular value of $\left.F\right|_{N-\partial N}$ as well as of $F l_{\partial N}$, then $M:=F^{-1}\{q\}$ is a c^{∞} mfd with 2, $\operatorname{din} M=n-k$, and

$$
\partial M=M \cap \partial N
$$

P4. Applications of 8.7

Examples $N=\delta^{\prime} \times[0,1] \subset \mathbb{R}^{3}$

$$
Q=S^{\prime}
$$

$$
F(x)=\left(x^{1}, x^{2}\right)
$$

$$
\because Q=s^{\prime}
$$

9.4 thm

If M is a cpt. (${ }^{\infty}$ mfld with 2 , there exists no smoth retraction $F: M \rightarrow \partial M \quad$ (i.e. $F(p)=p \quad \forall p \in \partial M$)
pt. (Hirsch) Indirect. $F: M \rightarrow \partial M$ Cos reFaction By sard's then \exists a regulan veln q of $F /$ MIJM q is also veg. val of $F / \partial M$
$9.3 \Rightarrow F^{-1}\{q\}$ is compact $1-$ dim manifold (with ∂)
$\partial\left(F^{-1}\{q\}\right)=F^{-1}\{q\} \cap \partial M=\{q\} \quad$ (F is retraction)
Every opt 1-dim mild with ∂ is a finite union

\Rightarrow the number of bdry points of $\partial\left(F^{-1}|q|\right)$ mut be even

Condlary (Browner's fixed pt then)
Every cont neap $G: B^{m} \rightarrow B^{m}=\left\{x \in Q^{m}| | x \mid \leqslant 1\right\}$ has a fixed pt
Pf. If we had by contr.) $G: B^{m} \rightarrow B^{m}$ without fixed pt.

F would be C^{0} retraction $\quad B^{m} \rightarrow \mathbb{S}^{m-1}$ we can smooth $F \leadsto \tilde{F}, C^{\infty}$ retraction

$$
F^{\prime}(x)= \begin{cases}F(2 x) & x \in \overline{B_{1 / 2}} \Rightarrow \\ F\left(\frac{x}{1 x}\right) & x \in B_{3 / 2} \backslash B_{1 / 2}\end{cases}
$$

$$
\begin{aligned}
& \tilde{F}=F^{\prime} * \sum_{\varepsilon}(|x|) \\
& \eta(|x|)=e^{-\frac{1}{1-|x|^{2}}} \frac{1}{c+t}
\end{aligned}
$$

$$
\eta_{\varepsilon}=\frac{1}{\varepsilon^{m}} \eta\left(\frac{x}{\varepsilon}\right)
$$

Mapping degree
M, N miles $F, G: M \longrightarrow N \quad C^{\infty}$
$A C^{\infty}$ map $H: M \times[0,1] \rightarrow N$ with $H(0,0)=F$ and $H(0,1)=G$ is called smooth hometopy for F to G.
If in addition $H(\cdot, t): M \longrightarrow N$ is C^{α} differ $\forall t \in[0,1]$ then H is called smooth isotopy $F \sim G$ smoothly hometopic (it 3 seth hemotopy) is an equirctence relation
$\left[\right.$ for hassitivity use $\tau:[0,1] \rightarrow[0,1], c^{\infty}$

$$
\tau(t)= \begin{cases}0 & t \in\left[0, \frac{1}{3}\right] \\ 1 & t \in\left[\frac{2}{3}, 1\right]\end{cases}
$$

"Componse" two given henetopios using τ
9.6 Lemme N corrected mfd, $q, q^{\prime} \in N$ $\Rightarrow \exists$ smooth isotopy $H: N \times[0,1] \longrightarrow N$ s.t $H(\cdot, 0)=i d N$ and $H(q, 1)=q^{1}$
if show first $\forall y \in B_{1}^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid<1\right\}$
\exists smooth isotopy $H: \mathbb{R}^{h} \times[0,1] \rightarrow \mathbb{R}^{h}$
s.t. $M(z, t)=z \quad \forall z \in \mathbb{R}^{n}, ~ B_{1}^{n} \quad \forall t \in[0,1]$

$$
\begin{aligned}
& H(\cdot, 0)=i d_{\mathbb{R}^{n}} \\
& H(0,1)=y
\end{aligned}
$$

Choore $\lambda \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ s.t

$$
\lambda(x)=\left\{\begin{array}{ll}
1 & |x| \leqslant|y|<1 \\
0 & |x| \geqslant 1
\end{array} \quad\left(y \in B_{1}^{n}\right)\right.
$$

vector fild $X(x):=y \cdot \lambda(x) \sim\left\{\varphi^{t}\right\}_{t \in \mathbb{R}} \xrightarrow{\text { asociciced flow }}$

$$
\varphi^{\prime}(0)=y \Rightarrow \text { put } H(z, t):=\varphi^{t}(z)
$$

$$
\frac{d}{d t} \varphi=\varphi_{0} x
$$

For connected mid N, define equivalence relation between its pts $q \sim q^{\prime} \Leftrightarrow \exists$ isotopy as claimed $B y$ resat in B_{1}^{n} (taking charts), equivalence classes are open
$\Rightarrow N$ is split into disjoint gean lets by equivalence classes \Rightarrow only 1 eqiinalance clans!

Now: M, N mitch of same dimension M (pt., N comected If $F: M \longrightarrow N$ is C^{σ} and $q \in N$ is reg. value then $F^{-1} 4 q 5$ is a finite set (cut 0 -dim subufld), possibly ϕ
9.7. Them M, N - as above
(1) $F, G: M \longrightarrow N$ smoothly hometopic, \& reg. value of both F and $G \Rightarrow \# F^{-1}\{q\} \equiv \# G^{-1}\{q\} \bmod 2$
(2) $F: M \rightarrow N \quad c^{\infty} \quad q$ / q l two neg. values of F $\Rightarrow \quad \# F^{-1}\{q\} \equiv \# F^{-1}\left\{q^{\prime \prime}\right\} \bmod 2$

The number $\operatorname{deg}_{2}(F):=\left(\# F^{-1}\{+4 \bmod 2) \in\{0,1\}\right.$
i) called mapping degree modulo 2 of F

- by (2) indep. of 7
- by (1) invariant under smooth haunetopy

阬 $M \times\{0\} \cup M \times\{1\}=\partial(M \times[0,1])$
if $H: M \times[0,1] \rightarrow N$ is a smooth hometopy $\left\{\begin{array}{l}H(\cdot, 0)=F \\ 1-(\cdot, 1)=G\end{array}\right.$
$\Rightarrow q$ is neg value of $\mathrm{H}_{2(M \times[0,1])}$ by arsumption

In ouder to apply 9.3, suppose finst q is reg. value of $\left.H\right|_{M \times(0,1)}$
$\stackrel{4.3}{\Rightarrow} \mathrm{H}^{-1}\{q$) is cpt. 1-dim mutd (posibly ϕ)
with bolny

$$
\left.\partial H^{-1}\{q\}=H^{-1}\{q\} \cap \partial(M \times[0,1]) \stackrel{(*)}{=} F^{-1}\{q\} \times\{0\} \cup G^{-1}\{q\} \times 31\right\}
$$

Hence, taking \#

$$
\sqrt{H(\partial \underbrace{\left.H^{-1} / q\right\}})}=\#\left(F^{-1}\{q\}\right)+\#\left(G^{-1}\{q\}\right)
$$

1-dimenterel cpt uftd with ∂

General case notice \exists open noil V of q in N s.t. all $q^{\prime} \in V$ are regales values of both F and b, and, in addition, $\# F^{-1}\left\{, G\right.$ and $\left.\left.\# G^{-1}\right\} \cdot\right\}$ are constant in V (exercise)
(2) P_{1}

$$
\cos _{q}
$$

$\odot P_{n}$
But then, by Sand', Lemme $\exists q^{\prime} \in V$ st is reg. value of $\left.H\right|_{M \times(0,1)}$

$$
\# F^{-1}\{q\}=\# F^{-1}\left\{q^{\prime}\right\} \underset{\bmod 2}{\equiv} \# G^{-1}\left\{q^{\prime}\right\}=\# G^{-1}\{q\}
$$

this frishes the of of (1)
c^{∞} nometopic
(2) Let $G: N \rightarrow N$ be diffeomaphision $\underset{\sim}{\sim}$ idN
st. $G(q)=$ q' (Lerma 9.6)

$$
G \circ F \sim F \stackrel{(1)}{\Longrightarrow} \not \underbrace{(60 F)^{-1}\left\{q^{\prime}\right)}_{\substack{11 \\ F^{-1}(q)}} \equiv F^{-1}\left\{q^{\prime}\right\} \bmod 2
$$

Example $9.7(1) \Rightarrow \exists$ no C^{∞} refection $F: B^{m} \rightarrow \underbrace{\partial B^{m}}_{S^{m-1}}$ since otherwise $H: S^{m-1} \times[0,1] \longrightarrow S^{m-1}$

$$
\begin{gathered}
H(p, t)=F(t p) \\
H(\cdot, 0) \equiv F(0) \quad\left(\operatorname{deg}_{2} \equiv 0\right) \\
H(\cdot, 1) \equiv \operatorname{id}^{m-1} \quad\left(\operatorname{deg}_{2} \equiv 1\right)
\end{gathered}
$$

If M, N oriented, $\operatorname{dim} M=\operatorname{dim} N, M c p, N$ comected then the mapping degree $\operatorname{deg}(F) \in \mathbb{Z}$ of a C^{∞} map $F: M \rightarrow N$ is defined as

$$
\operatorname{deg}(F)=\sum_{p \in F_{\text {finite }}^{-1} i q q^{2}} \operatorname{sgn}\left(d F_{p}\right) \quad(q \text { regular })
$$

similarly as in mod 2 case one shows that $\operatorname{deg}(F)$ does not depend on q

Applications (exercise) $M \subset \mathbb{R}^{3}$ (pt comected rontece $F: M \rightarrow S^{2}$ is exterior Gauss map $\operatorname{deg}(F)=\frac{1}{2} X(M)$

9.8 thm \mathbb{S}^{m} admits a monuwhere varishing C^{∞} tangent vector field if, and ouly if, m is odd ~牛 supprose $x: S^{m} \rightarrow S^{m} C^{\infty}$ tangert v.f also $\frac{x}{|x|}$ is (assune wlog $|x|=1$)

$$
\begin{gathered}
H: S^{m} x[0,1] \longrightarrow S^{m} \quad|p|=1 \\
H(p, t)=p \cos (\pi t)+X(p) \sin (\pi t)
\end{gathered}
$$

is c^{∞} hometopy from id to -id

$$
\text { But }\left\{\begin{array}{l}
\operatorname{deg}(i d)=1 \\
\operatorname{deg}(-i d)=(-1)^{m+1}
\end{array}\right.
$$

So by hanetopy inv of deg

$$
\Rightarrow 1=(-1)^{m+1} \Rightarrow m \text { odd }
$$

Conversely if $m=2 k-1$ odd $\quad S^{2 k-1} \subset \mathbb{R}^{2 k}$

$$
x\left(p^{1}, \cdots, p^{2 k}\right)=\left(p^{2},-p^{1}, p^{4},-p^{3}, \cdots, p^{2 k},-p^{2 k-1}\right)
$$

defines a nonzero tangent rut on S^{m}

$$
\begin{aligned}
& \xi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad(\infty \quad \text { v. }) . \\
& F: S^{\prime} \rightarrow S^{\prime} \quad F(x) \neq 0 \text { for } 0<|x| \leq 1 \\
& |\xi(x)|
\end{aligned}
$$

$\operatorname{deg} F=I_{\xi}(0)$ Poincoré index of ξ at 0

