For a chant (P,V) of M aroudp,
(anonice) derivations
$$\frac{\partial}{\partial y}$$
 at p i=1,--,m

defined by

$$\frac{\partial}{\partial \psi_{j}}\Big|_{p}(t) := \frac{\partial f}{\partial \psi_{j}}(p) := \frac{\partial (f \circ \psi^{-1})}{\partial x^{j}}(\psi_{p})$$

$$\frac{\partial}{\partial x^{j}}\Big|_{p}(t) := \frac{\partial f}{\partial \psi_{j}}(p) := \frac{\partial (f \circ \psi^{-1})}{\partial x^{j}}(\psi_{p})$$

$$\frac{\partial}{\partial x^{j}} \quad \text{The set of all derivations at } p \in M((c^{\infty}))$$
forms an another vector space.
If ψ_{j} is a chort around p , then

$$\frac{\partial}{\partial \psi_{j}}\Big|_{p}(t) = -\frac{\partial}{\partial \psi_{j}}\Big|_{p}$$
is a basis,

and my devication
$$\chi$$
 at p is of the form

$$\chi = \sum_{j=1}^{m} \chi(\psi^{j}) \frac{\partial}{\partial \psi^{j}} \Big|_{p} \quad (x)$$

$$\frac{p_{i} \circ f}{2} \frac{\partial}{\partial \psi^{j}} \Big|_{p} = 0 \quad (x) \quad$$

$$\begin{aligned} \hat{J}_{n}dued \quad h := f_{0} \psi^{n}, \quad \psi(q) = : \times \\ h(x) - h(o) &= [h(tx)]_{t=0}^{t=1} = \int_{0}^{1} \frac{\partial}{\partial t} [h(tx)] dt \\ &= \int_{0}^{1} \frac{\partial h}{\partial t} (tx) \frac{h(tx)}{At} = \sum_{i}^{2} x_{i} \int_{0}^{1} \frac{\partial h}{\partial x_{i}} (tx) \\ h_{i}(x) \\ & h_{i}(x) \\ \hline h_{i}(x) \\$$

$$=) \frac{\partial}{\partial y_{i}}|_{p} f = f_{i}(p) = \frac{\partial f}{\partial y_{i}}(p)$$

$$X(f) = X(\sum_{j} f_{j}(p)) = \sum_{j} X(f_{j})\frac{\varphi^{j}(p) + f_{j}(p)X(\phi^{j})}{D}$$

$$= \sum_{j} X(\phi^{j}) \frac{\partial f}{\partial y_{j}}(p)$$

$$= \sum_{j} X(\psi^{j}) \frac{\partial}{\partial y_{j}}|_{p}(f)$$

$$Identification tangent opera considering derivations$$

$$M \text{ is } C^{\infty} \text{ unfld}, \text{ we identify } X \in TMp (Def 8.4)$$
with the derivation

$$X(f) := df_{p}(x) \in TR_{f(p)} \stackrel{\sim}{\underset{i}{\longrightarrow}} R$$

for $x = [P, 5]_{p}$
 $df_{p}(x) = df_{p}([P, 3]_{p}) \stackrel{d}{=} [id_{R}, d(f \circ Y')_{P(p)}(5)]_{f(p)}$
 $\stackrel{(i)}{=} d(f \circ P'')_{P(p)}(5) = \sum_{j} \frac{\partial(f \circ Y'')}{\partial X^{j}}(Y(p)) \frac{\partial^{j}}{\partial X^{j}}$
 $= \sum_{j} \frac{\partial^{j}}{\partial Y^{j}} \Big|_{y}(f)$
 $\stackrel{(i)}{\longrightarrow} X$

For
$$F: M^{m} \longrightarrow N^{n}$$
 ($^{\infty}$, $X \in TM_{p}$,
 $f \in (^{\infty}(N)$, we have
 $\partial_{Fp}(X)(f) \stackrel{(*)}{=} \partial_{f}_{F(p)}(dF_{p}(X))$
 $= \partial_{(f \circ F)_{p}}(X) \stackrel{(*)}{=} X(f \circ F)$
 $c: I \longrightarrow M$ ($^{\infty}$ c'(t) $\in TM_{c(t)}$ as derived ion
 $C'(H(f)) \stackrel{(*)}{=} \partial_{f}_{c(t)}(C'(t)) = (f \circ c)'(t)$

Differential forms (and Stake's Hum)

$$\int_{a}^{b} f' = f(b) - f(a) + \text{terminology}$$

$$\Lambda^{s}(\mathbb{R}^{h}) :=$$
 vector space of alterating solineon
 $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{h}$ \longrightarrow \mathbb{R}
 $\stackrel{s}{=}$ $\stackrel{s}{=}$ $\stackrel{s}{=}$ \mathbb{R}

$$f(s_{\sigma(n)}, --, s_{\sigma(s)}) = sgn(\sigma) f(s_{1}, --, s_{s})$$

In particular $\Lambda^{\circ}(\mathbb{R}^{n*}) = \mathbb{R}$, $\Lambda^{s}(\mathbb{R}^{n*}) = 0$, $s \ge n+1$

Exterior product

$$\alpha \in \Lambda^{S}(\mathbb{R}^{n*})$$
, $\beta \in \Lambda^{t}(\mathbb{R}^{n*})$
 $\alpha \land \beta \in \Lambda^{S+t}(\mathbb{R}^{n*})$
 $(\alpha \land \beta)(\underline{s}_{1,--}, \underline{s}_{S+t}) :=$
 $:= \sum sgn(\sigma) \alpha(\underline{s}_{\sigma(n,--)}, \underline{s}_{\sigma(s)}) \beta(\underline{s}_{\sigma(sn)}, --, \underline{s}_{\sigma(s+t)})$
 $(\underline{s}_{t}) - \underline{s}_{hu} + \underline{s}_{hu}$
 $(\underline{s}_{t}) - \underline{s}_{hu} + \underline{s}_{hu}$
 $(\underline{s}_{t}) - \underline{s}_{hu} + \underline{s}_{hu}$

Properties •
$$\Lambda$$
 bilinean
• $\alpha \in \Lambda^{\circ}(\mathbb{R}^{h*}) \cong \mathbb{R}$ $\alpha \wedge \alpha = \alpha \alpha$
• $\alpha \in \Lambda^{\circ}(\mathbb{R}^{h*}) \cong \mathbb{R}$ $(\forall \alpha \in \Lambda^{\circ}(\mathbb{R}^{h*}))$
• $\alpha \wedge \beta = (-1)^{st} \beta \wedge \alpha$
• $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$

$$e_{1, -., e_{n}}$$
 denote conduced basis of \mathbb{R}^{h}
 $e_{1, ..., e_{n}}$ duel basis, i.e. $e^{i}(e_{j}) = \delta_{j}^{i}$
Every $d \in \Lambda^{s}(\mathbb{R}^{n*})$ has the representation
 $\longrightarrow B_{y}$ define $e^{i} \in \mathbb{R}^{n*} = \Lambda^{i}(\mathbb{R}^{n*})$

$$\begin{aligned} \alpha &= \sum_{\substack{n \leq i_{1}, \dots, i_{s} \\ (n)}} \alpha_{i_{1}, \dots, i_{s}} e^{i_{1}} \wedge \dots \wedge e^{i_{s}}} \\ \alpha_{i_{1}, \dots, i_{s}} (e_{i_{1}, \dots, i_{s}}) = \lambda_{i_{1}, \dots, i_{s}} (e_{i_{1}, \dots, i_{s}}) \\ e^{i_{n}} \wedge \dots \wedge e^{i_{s}} (f_{1, \dots, f_{s}}) = \lambda_{i_{1}, \dots, i_{s}} (e^{i_{n}}(f_{s})) \\ \lambda &= \lambda_{i_{1}, p \leq s} \\ \hline \lambda &= \lambda_{i_{1$$

$$X \longmapsto W_{X}(\xi_{1}, --, \xi_{5}) \text{ is smooth } (C^{\infty})$$

As a conseq. if $\xi_{1,1} - -\xi_{5} \in C^{\infty}(U, \mathbb{R}^{n})$

$$W(\xi_{1,1}, --, \xi_{5}) : U \longrightarrow \mathbb{R}$$

$$\lim_{\substack{i \in U_{1}(X), --, \xi_{5}(X)}} W_{X}(\xi_{1}(X), --, \xi_{5}(X))$$

If
$$f: U \rightarrow R$$
 smoth
 $df := 1 - diff form$
 $\exists \in R^n$ $(df)(\underline{s}) = df_x(\underline{s})$
 $usual differential).$

Denote
$$\Omega^{S}(U)$$
, $U \subset IR^{N}$ open, the space of
diff forms of dogs on U
For all $W \in \Omega^{S}(U)$ we have
 $W = \sum_{1 \leq i_{1} < \cdots < i_{N} \leq N} W_{i_{1}, \cdots < i_{N}} dX^{i_{1}} \wedge \cdots \wedge dX^{i_{N}}$
"briefly"
 $= \sum_{1 \leq i_{1} < \cdots < i_{N} \leq N} W_{1} dX^{T}$
 $I = (i_{1}, \cdots, i_{N})$
 $i_{N} < \cdots < i_{N}$
As before
 $W_{i_{1}} = i_{N} = W(e_{i_{1}}, \cdots, e_{i_{N}})$

Theorem (extensor derivative)
$$(U \subset \mathbb{R}^{n} \text{ open})$$

 $\exists \text{ unique sequence of linear operators}$
 $d: \Omega^{s}(U) \longrightarrow \Omega^{s+1}(U) \quad s \ge 0$
with the following properties:
(1) For $f \in \Omega^{\circ}(U) = (\mathcal{O}(U) \quad df \text{ is the normal differential})$
(2) $d \circ d = 0 \quad (\forall f \in \Omega^{s}(U), d(df)) = 0 \in \Omega^{s+2})$
(3) $d(w \land 0) = dw \land 0 + (-1)^{s} w \land d0$
whence $w \in \Omega^{s}(U), 0 \in \Omega^{t}(U)$

existence
Define d acording to
$$(x)$$
 (and (1))
check that it satisfies $(n) - (n)$
 (1) $W = \frac{1}{2} dx^{T}$ on U
 $dw = \frac{1}{2} dx^{T} dx^{T} = \sum_{i=1}^{n} \frac{2i}{2x_{i}} dx^{i} n dx^{T}$
 $d(dw) = \sum_{i,j=1}^{n} \frac{2i}{2x_{i}} dx^{i} n dx^{i} n dx^{T} = O$
 $-\frac{1}{2} dx^{i} n dx^{j}$

Defin
$$F: U \longrightarrow V$$
 (∞ we $\mathcal{L}^{s}(v)$
Rullbacks form $F^{t}w \in \mathcal{L}^{s}(v)$
 $(F^{t}w)_{x}(S_{1},...,S_{s}) = W_{F(x)}(dF_{x}(S_{1}),...,dF_{x}(S_{s}))$
In particular if $w = f \in C^{\infty}(v)$ O-form $F^{t}w = w \circ F$
Reposition $F: U \longrightarrow V$ (∞ (as above)
 $w \in \mathcal{I}^{s}(v)$, $\theta \in \mathcal{R}^{t}(v)$. Then: (a,bove)
 $(o) F^{t}(aw + b\theta) = aF^{t}w + bF^{t}\theta = if s = t$
 $(A) F^{t}(w \wedge \theta) = F^{t}w \wedge F^{t}\theta$
 $(v) F^{t}(dw) = d(F^{t}w)$

proof Hint for (2). Prove it first for

$$W = \int e^{-C^{\infty}(V)} = S^{0}(V) \iff chain rule$$

$$\left(d(t_{0} F) = dF_{0} dF \right)$$
use induction over $S \ge 0$ and Thun of exterior derivative
Integration of forms and Stokes! Hum
Baby rension of Stokes! UC Rth open $f \in C^{\infty}_{c}(U)$
(1) $\int \frac{\partial f}{\partial x_{1}} dx_{1} - dx_{m} = \int f dx_{2}^{2} - dx_{m}$

$$Un(x_{1}^{2}c_{1}) = \int f dx_{2}^{2} - dx_{m}$$

$$Un(x_{2}^{2}c_{1}) = \int f dx_{2}^{2} - dx_{m}$$

$$2 \leq i \leq m$$

$$(2) \int \frac{\partial f}{\partial x^{i}} dx^{i} \cdots dx^{m} = 0$$

$$Find the clearling
$$Moof(n) \quad LHS = \int Ax^{i} \cdots dx^{m} \int Ax^{i} \frac{\partial f}{\partial x^{i}} dx^{i} \cdots dx^{m}$$$$

121 Exercini

Refin A subset
$$M \subset \mathbb{R}^n$$
 is a m-din orienteble
submethed with bdry of \mathbb{R}^n if $\forall p \in M$, $\exists V \subset \mathbb{R}^n$
open ubbd of p an a positive diffeomorphisme $\varphi: V \to V$
onto one open set $V \subset \mathbb{R}^n$ such that $det(dep) > O$
 $\forall p, (y,e)$
 $\forall (M \cap V) = (\mathbb{R}^m \times 104) \cap V \cap \{X\} \leq 0\}$

and
$$\lambda_{\alpha}$$
 puntition of with subord. to $1V\alpha_{1}$ st

$$\sum_{\alpha} \int \left[(\Psi_{\alpha}^{\dagger})^{*} (\lambda_{\alpha} w) (\Psi_{1}, ..., \Psi_{m}) \right] dx' - dx'' < 20$$

$$W_{\alpha} \times 204 := (R^{m} \times 105) \cap U_{\alpha} \cap 1 \times 1 \le 05 \qquad W_{\alpha} \subset R^{m}$$
If w is integrable over M , then:

$$\int w := \sum_{\alpha} \int ((\Psi_{\alpha}^{-1})^{*} (\lambda_{\alpha} w) (\Psi_{1}, ..., \Psi_{m}) dx' - dx''$$

$$M = \sum_{\alpha} \int ((\Psi_{\alpha}^{-1})^{*} (\lambda_{\alpha} w) (\Psi_{1}, ..., \Psi_{m}) dx' - dx''$$

$$first m rec. of canonic basis of $R^{m}$$$

$$= \sum \text{Let us check if only depends on } M, w$$

$$1. \quad w \text{ has cpl. support in } V \text{ and }$$

$$V \stackrel{\text{V}}{\rightarrow} V \quad (x^*, \dots, x^n) \quad \overline{x} := (x^*, \dots, x^n)$$

$$V \stackrel{\text{V}}{\rightarrow} V \quad (y^*, \dots, y^n) \quad \overline{y} := (y^*, \dots, y^n)$$

$$\int ((\psi^{-1})^* w_{(\overline{x}, v)} (e_1, \dots, e_n) d\overline{x} \stackrel{\text{O}}{=}$$

$$\{\overline{x} : (\overline{x}, v) \in U, \ x^* \leq v \} =: W \in \mathbb{R}^m$$

$$\stackrel{\text{O}}{=} \int ((\overline{\psi}^{-1})^* w_{(\overline{y}, v)} (e_{\overline{y}, v}) (e_{\overline{y}, v}) d\overline{y}$$

Let
$$\gamma = \tilde{\gamma} \circ \varphi^{-1} : \cup \longrightarrow \tilde{\psi}$$

Notice $\gamma(\bar{x}, \sigma) \in \mathbb{R}^{m} \times 105$
so, we can define $\tilde{\gamma} : W \longrightarrow \tilde{W}$ on $\gamma(\bar{x}, \sigma) = (\tilde{\gamma}(\bar{x}), \sigma)$
By defin of pull-beck $(\tilde{\gamma}^{-1})^* = \tilde{\gamma}^{-1} \circ \gamma \quad (d\tilde{\gamma}_{\bar{x}}|e_{1}), \dots, d\tilde{\gamma}_{\bar{x}}|e_{m})$
 $(\tilde{\gamma}^{-1})^* \omega_{(\bar{x},\sigma)} \quad (e_{1}, \dots, e_{m}) = ((\tilde{\gamma}^{-1})^* \omega)_{(\tilde{\gamma}(\bar{x}),\sigma)} \quad (d\tilde{\gamma}_{(\bar{x},\sigma)}^{-1}e_{1}), \dots, d\tilde{\gamma}_{(\bar{x},\sigma)}^{-1})$
me methics $= det(d\tilde{\gamma}_{\bar{x}})((\tilde{\gamma}^{-1})^* \omega)_{(\tilde{\gamma}(\bar{x}),\sigma)} \quad (e_{1}, \dots, e_{m})$
neter determents

where

$$f(5) := (\widetilde{\psi})^* \omega_{(\widetilde{y},0)} (e_{1,--,}e_{m})$$

$$\overline{y} = \widetilde{\psi}(\overline{x})$$

Studend
change of
waterian =
$$\int_{W} ((Y^{-})^{*} w)_{(\overline{2},0)} (e_{1,-},e_{m}) dy$$

2. (evenuse) $\int_{M} w$ independent of $(Va, Va), \lambda a$
 $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

$$\begin{cases} d((e^{-1})_{e(p)} (e_i) : 2 \le i \le m \end{cases} \\ define as positive basis of $T(\partial M)_p \\ The (generalized Stokes) M C R^n orientable matinsubuffed with ∂ , $W \in \mathcal{R}^{m-1}(M)$ st
 $g w intereste on \partial M \\ dw intereste on M \\ dw intereste on M \\ Then, $\int dW = \int W \\ M = \int W \\ \partial M \end{cases}$$$$$

proof [case 1]
$$W$$
 ept spt in V $\Psi: V \rightarrow V$
is submitted chart

$$\int dW = \int (\Psi^{-1})^* dW (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$M(nV) \qquad R^m \times 105 n \{x' \le 0\}$$

$$M(nV) = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$M(nV) = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int d(\Psi^{-1})^* W (\Psi_{1,1}, -\Psi_{m}) dx' - dx^m$$

$$W = \int W_{1,1} dx^m (I = (h_{1,1}, -\Psi_{1,1}))$$

$$dW = \int \Psi_{1,1} \Phi_{1,1} dx^m dx^m$$

Notice
$$J = (i_{1}, ..., i_{m})$$
 $i_{1} < i_{2} < ... < i_{m}$
 $dx^{J}(\ell_{1}, ..., \ell_{m}) = \begin{cases} 1 \quad (i_{1}, ..., i_{m}) = (1, 2, ..., m) \\ 0 \quad \text{otherwise} \end{cases}$
 $dw = \begin{cases} i_{1} & m & 2 \\ i_{2} & m & 1 \\ i_{2} & m & 1 \end{cases} dx^{i_{1}} \dots dx^{i_{m}} + \quad \text{other term which} \\ give & 0 \quad \text{when evolused} \\ at(\ell_{1}, ..., \ell_{m}) \end{cases}$
 $\overline{w} = \begin{cases} i_{1} & m & 1 \\ i_{2} & m & 1 \\ i_{2} & m & 1 \end{cases} dx^{i_{1}} \wedge ... \wedge dx^{i_{m}} + \quad \text{other terms as above} \end{cases}$

Therefore,
$$\int dw \stackrel{(i)}{=} \sum_{i=1}^{m} \int \frac{2}{3x_i} f^i(x_1, ..., x_m, o, ..., o) dx_1 ... dx_m$$

 $M \stackrel{(i)}{=} \int f^i(x_1, ..., x_m, o, ..., o) dx_2 ... dx_m$
 $\int \frac{1}{3x_1 = 0} \int \frac{1}{6} \int \frac{1}{3x_1 = 0} \int \frac{1}{3x_1 = 0} \int \frac{1}{6} \int \frac{1}{3x_1 = 0} \int \frac{1}{3x_1$

 $\int dw = \sum_{\alpha} \int d(\lambda_{\alpha} w^{\alpha})$ Then $\frac{(\cos e)}{q} = \frac{2}{q} \int \lambda_{q} w = \int W$

$$\frac{Ch \, 9 \, (Sand's hun & measure & more a serve of is a multiset if
Here I sees. of cube $R_i C (R^m s + A - U; G;$

$$\frac{Z[G_i] < \mathcal{E} \quad (Q = [x', x' + r] \times [x^2, x^2 + r] \times \dots \times [x^m, x^m + r])$$

$$\frac{1}{R} = r^m$$
The mion of countedly many null sets is a null set

$$\frac{[Vanel]}{[measure]} \frac{\mathcal{E}}{2}, \quad \frac{\mathcal{E}}{2^2}, \quad 1 \quad \frac{\mathcal{E}}{2^k} \quad \frac{\pi}{2^m} \quad \mathcal{E}$$$$

If
$$V \in \mathbb{Q}^{m}$$
 is open $F: V \rightarrow \mathbb{Q}^{m} \subset 1$
 $A \in V \text{ null} \implies F(A) \text{ null}$
 $Pf: V = \bigcup_{K=1}^{\infty} B_{K} \quad B_{K} \quad cpt \text{ ball}, \text{ counder } A \cap B_{K}$
 $an \text{ courses } A \cap B_{K} \subset \bigcup_{i} B_{i} \subset K \subset V$
 $cpt \text{ set fixed}$
 $F \in C^{1} \implies F[K \text{ hipdrift}$
 $= i \quad diam (F(O_{i})) \leq L \quad diam(Q_{i})$
 $(sum \text{ over } i)$
 $= i \quad F(A \cap B_{K}) \text{ is null}$

satisfies f(z) mull $\forall \alpha = (\alpha_1, \dots, \alpha_m) \}$ $|\alpha| \leq \kappa$ $Z^* := \left\{ x \in Z \mid \frac{2^{\alpha} f}{2 x^{\alpha}}(x) = 0 \right\}$ since $f|_{\overline{Q_{3r}(x_0)}}$ is mifornly CK 4E>0 36=5(2), 4x,x'e Qr/2(x0) $(*) \left| f(x') - f(x) - \sum_{1 \le |\alpha| \le K} \frac{1}{\alpha_1} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(x) (x'-x)^{\alpha} \right| \le E[x'-x]$ $|x'-x| < \delta$ Taylor exponsion

3 xie EtaQi if $\Sigma^* \cap \Theta_i \neq \emptyset$ (**) =) IRN $f(\mathbb{Z}^{n} \mathbf{Q}_{i}) \subset B_{f(\mathbf{x}_{i})}(\mathcal{E}f^{k})$ C cube of ride 28 gk =: â. $|f(z^{*}nG_{i})| \leq \frac{N}{2}|Q_{i}| = N(\epsilon g^{k})^{h}$ (=1) $\leq ((m)(\gamma)^{m}(\gamma)^{m}(\gamma)^{m}(\gamma)^{m}) \leq C(m,r)f$

$$p^{-m} g^{kn} \leq g^{kn-m} \leq g \quad k \quad lange \quad g \in (0,1)$$

$$T \quad kn-m \geq 1$$

$$= f(Z^*) \quad is \quad null \quad set$$

$$B_{\gamma} \quad defin \quad of \quad Z^*, \quad if \quad x \in Z \sim Z^*$$

$$df(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$f(x) \quad does \quad net \quad here \quad meximal \quad nenk$$

$$= \frac{1}{2} \times e \prod_{x} := \left\{ \times e \Psi(u) := \frac{\partial 4}{\partial x^{x}} > 0 \right\}$$

$$= \frac{\partial 4}{\partial x^{y}} = 0 \quad \forall \quad |\beta| < |\kappa| \int |\beta| < |\kappa|$$

Monifold with bory

m-dim (20 mflds with body one defined as in
8.1, except that the images of charts
$$\Psi(U) \subset IR^{m}$$

are open in a halfspace = $[x \in IR^{m}] \times 205 = H$
 $3 \times 21R^{m} \times 205 = 2H$

Bdry of M

$$\partial M := \{p \in M \mid \Psi(p) \in \partial H, for some (hence every) chect \Psi\}$$

$$(\{[\Psi, \S]_p \mid \S \in T(\partial H)_{\Psi(p)} \text{ for } \Psi: V \rightarrow \Psi(v) \subset H)$$

The differential dFp: TMp - TN_{F(p)} is defined exactly
as in ch.8.

$$\begin{bmatrix} 9.3 \text{ Thum} & (\text{regular value the ten unflds with d}) \\ N^{n} \text{ mfd} & \text{mith } d , Q^{k} \text{ mfd} , F: N \rightarrow Q C^{20} \\ \text{If } q \in F(N) \text{ is a regular value of } F \\ N-\partial N \text{ as well as of } Fl_{\partial N}, \text{ then } M := F^{-1}(q) \text{ is a } \\ \text{comfld with } d, & \text{din } M = n-k, \text{ and} \\ \partial M = M \cap \partial N \\ Pt. Applications of 8.7 \\ \end{bmatrix}$$

)

Examples
$$N = S^{1} \times [0, \Omega \subset \mathbb{R}^{3}$$

 $Q = S^{1}$
 $F(x) = (x^{1}, x^{2})$
 $\frac{q.47m}{14 \text{ M}}$ is a cpt. (a mild with ∂ , there exists no
smoth retraction $F: M \rightarrow \partial M$ (i.e. $F(p) = p$ $\forall p \in \partial M$)
 $pt \cdot (\text{Hirsch})$ Indirect. $F: M \rightarrow \partial M$ (a retraction
By Sand's time \exists a regular rely q of $F_{1}M \rightarrow M$
 q is also reg. val of $F_{1}\partial M$

XE BIZ bell of repres 1/2 $\begin{cases} F(2x) \\ \mp(\frac{x}{hx}) \end{cases}$ F'(x) =centered at 0 XE B32 B12

 $\tilde{F} = F' * h(I \times I)$ $\frac{1}{2(1\times 1)} = e^{-\frac{1}{1-1\times 1^2}} \frac{1}{C+1}$

1×1=1

Mapping degree

$$M, N$$
 mflds $F, 6: M \longrightarrow N$ C^{oo}
 $A (20 mep H: M \times I0, 1] \longrightarrow N$ with $H(., 0) = F$
and $H(., 1) = G$ is called smooth hometopy from
 $F to G$.
If in addition $H(., t): M \longrightarrow N$ is C^o diffeo
 $Vte[0, 1]$ then H is called smooth isotopy
 $F \sim G$ smoothly hometopic (if \exists smeth hometopy)
is an equivalence relation

For howsitivity we
$$T: [0,1] \rightarrow [0,1]$$
, C^{∞}
 $T(t) = \begin{cases} 0 & t \in [0,\frac{1}{3}] \\ 1 & t \in [\frac{3}{3},1] \end{cases}$
"component" two given herebogies D 1
withog T
9.6 Lemme N connected mfd , $q, q' \in N$
 $= 7 \quad \exists \text{ smooth isotopy } H: N \times [0,1] \rightarrow N$
 $s.t \quad H(\cdot,0) = id_N \text{ and } H(q,1) = q'$
 pt show first $\forall y \in B_1^n := \{x \in R^n \mid |x| < 1\}$
 $\exists \text{ smooth isotopy } H: R^n \times [0,1] \rightarrow R^n$

St.
$$H(t,t) = t$$
 $\forall t \in [k^{h} \setminus B_{1}^{h}$ $\forall t \in [o_{1}]$
 $H(\cdot, o) = id_{1k^{h}}$
 $H(o, i) = Y$
Choose $\lambda \in C_{c}^{\infty}(1k^{h})$ s.t
 $\lambda(x) = \begin{cases} 0 & |x| \geq 1 \\ 0 & |x| \geq 1 \end{cases}$
rector field $X(x) := Y \cdot \lambda(x)$ $\longrightarrow \{Y_{c} \in S_{1}^{h}\}$
 $\gamma = \begin{cases} 0 & |x| \geq 1 \\ 0 & |x| \geq 1 \end{cases}$
 $Y = \begin{cases} 0 & |x| \geq 1 \\ 0 & |x| \geq 1 \end{cases}$
 $Y = \begin{cases} 0 & |x| \geq 1 \\ 0 & |x| \geq 1 \end{cases}$
 $f(t, t) := \langle t^{t}(t) \rangle$
 $d_{t} = f(t, x)$

Hence, taking # $\frac{4}{1}\left(\frac{\partial}{\partial}\frac{1}{1}\left(\frac{1}{1}\right)^{2}\right) = \frac{4}{1}\left(\frac{F^{2}}{1}\left(\frac{1}{2}\right)^{2}\right) + \frac{4}{1}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right)$ 1-dimensional opt ufled with 2 6 124 FASI

Mxhoy Ft Mxhly

$$\begin{aligned} \#F'\{q\} &= \#F'\{q'\} \equiv \#G'\{q'\} = \#G'\{q\} \\ & \text{mod} 2 \\ \end{aligned}$$

$$\begin{aligned} \text{this finishes the pf of (1)} \\ (2) \quad \text{let} \quad G: N \rightarrow N \quad \text{be diffeomorphism} \quad \mathcal{N} \quad \text{id} N \\ & \text{st. } G(q) = q' \quad (\text{Lemma } q.6) \\ \Rightarrow \quad q' \quad \text{ros. volme} \quad \text{of } G \circ F \quad \left[\begin{array}{c} A(G \circ F)_p = Abg \circ dF_p \\ & \text{surjective } \forall p \in (b \circ F)' iq' \\ & = F' iq' \end{array} \right] \\ G \circ F \sim F \quad \stackrel{(n)}{\longrightarrow} \quad \# (6 \circ F)' iq' \\ & = F' iq' \end{bmatrix} \quad \text{mod} 2 \\ & \overset{(1)}{\longrightarrow} \quad \overset{(1)}{\longrightarrow} \quad\overset{(1)}{\longrightarrow} \quad \overset{(1)}{\longrightarrow} \quad \overset{(1)}{\longrightarrow} \quad \overset{(1)}{\longrightarrow} \overset{(1)$$

Example
$$9.7(n) \implies \exists no (20 \text{ retrection } F: B^{n} \rightarrow \partial B^{n}$$

Since otherwise $H: S^{m} \times Io_{1}I \longrightarrow S^{m-1}$
 $H(p,t) = F(tp)$
 $H(\cdot, 0) \equiv F(0)$ $(de_{52} \equiv 0)$
 $H(\cdot, 1) \equiv id g^{m-1}$ $(de_{52} \equiv 1)$
 $I \neq M, N$ oriented, $dim M \equiv dim N$, $Mcpt$, N conserved
then the emerging degree $deg(F) \in \mathbb{Z}$ of a C²⁰
 $mep F: M \longrightarrow N$ is defined as

$$dag(F) = \sum sgn(dF_p) (q regular)$$

$$p \in F^{-1}(\frac{1}{2})$$
finite

Similarly as in mod 2 case one shows that
$$deg(F) \ does \ not \ depend \ on \ q$$

$$Applications \ (exercise) \qquad M \subset \mathbb{R}^3 \ (pt \ connected \ smfele)$$

$$F: M \longrightarrow S^2 \qquad is \ extersion \ Gauss \ nop$$

$$deg(F) = \frac{1}{2} X(M)$$

S admits a nouwhere vanishing (2 fengent 9.8 thm vector field if, and only if, m is odd ft suppose X: S^m - S^m (200 tangent V:f aboo <u>X</u> is (ansume wlos 1X1 |X| = |

H:
$$S^m \times I_{0,1} \longrightarrow S^m$$
 $1p_{l=1}$
H(p,t) = $p cos(\pi t) + X(p) sin(\pi t)$
is C^∞ homeorphy from id to -id
But $l deg(id) = 1$
 $(deg(-id) = (-1)^{m+1}$
So by homeorphy inv. of deg
 $\longrightarrow 1 = (-1)^{m+1} \longrightarrow m odd$

Conversely if
$$M = 2K-1$$
 odd $S^{2K-1} \subset \mathbb{R}^{2K}$
 $X(p^{1}, ..., p^{2K}) = (p^{2}, -p^{1}, p^{4}, -p^{3}, ..., p^{2K}, -p^{2K-1})$
defines a nonzero tangent v.t on S^{M}
 $\overline{3}: 1\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ $(\infty v.) = S(x) \neq 0$ for $0 < |x| \le 1$
 $\overline{F}: S^{1} \rightarrow S'$ $\overline{F(x)} = \frac{S(x)}{1S(x)}$
deg $\overline{F} = I_{\overline{5}}(0)$ Poincaré index of S at 0