
Differential Geometry I
Prof. Dr. Joaquim Serra

27. January 2023

Solutions Differential Geometry I
Single Choice Questions

SC1 Let M be the (genus 2) surface in the figure.

~W ⑥

Then
∫
M K dA equals:

(A) 4π.
(B) 0.
(C) −2π.
(D) −4π.
(E) −8π.

Solution:

The correct solution is (d). The surface has genus g = 2, so χ(M) = 2 − 2g = −2 and by
Gauss-Bonnet

∫
M K dA = 2πχ(M) = −4π.

SC2 Let M be the same surface as in question SC1. If N : M −→ S2 is the Gauss map, then deg2N ,
i.e. the mapping degree mod 2, equals

(A) 0.
(B) 1.
(C) depends on whether N is pointing inwards or outwards.
(D) 1 at points of positive Gauss curvature, 0 otherwise.
(E) 0 at points of positive Gauss curvature, 1 otherwise.

Solution:

The correct solution is (b). Consider the outward pointing Gauss map and let v be unit
normal vector pointing to the “right”. Then N−1(v) consists of the three points p on M where
N(p) = v, as shown in picture. They are all regular points (and hence v is a regular value)
because the Gauss curvature does not vanish. Thus deg2N = #N−1(v)mod 2 = 1.
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SC3 Consider the following (graphical) submanifolds of R3, parametrized by f : (x, y) 7→ (x, y, z(x, y)),
where z = z(x, y) is given by

(I) z = x2 + y2 (II) z = x2 − y2 (III) z = x4 − y2

(IV) z = x2 − sin2 y (V) z = y2 + (x+ y)3

The following is true.

(A) (I) and (V) have positive Gauss curvature at (0, 0).
(B) (II), (III), and (IV) have negative Gauss curvature at (0, 0).
(C) (III) and (V) have zero Gauss curvature at (0, 0).
(D) (II) is the only one with negative Gauss curvature at (0, 0).
(E) (V) has positive Gauss curvature at (0, 0).

Solution:

The correct solution is (c). Geometrically, or with a direct computation one shows that the
sign of the Gauss curvatures at (0, 0) are:

KI > 0, KII < 0, KIII = 0, KIV < 0, KV = 0.
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SC4 Suppose Ω ⊂ R3 is an open subset such that ∂Ω (the topological boundary) is a smooth
compact submanifold satisfying

∫
∂Ω
|K| dA = 4π. Then

(A) Ω must be convex.
(B) Ω must be a ball.
(C) Ω must be a union of disjoint balls.
(D) Ω must have constant mean curvature.
(E) the mean curvature of Ω must vanish at one point, at least.

Solution:

The correct solution is (a). For the sphere S2 we have
∫
S2 |K| dA = 4π, so (c) and (e) are

wrong. Attaching two hemispheres to a cylinder we obtain a surface M with
∫
M |K| dA =∫

S2 |K| dA = 4π (because the Gauss curvature K vanishes along the cylindrical portion of
M), thus (b) and (d) are wrong.

SC5 Consider the torus of revolution as in the figure.

↳
f

a

b
/ I

Let Ω be the set of points with positive Gauss curvature. The area of Ω is:

(A) 2π2ab.
(B) 2π2ab+ 4πa2.
(C) 4πab.
(D) 2π(a2 + b2).
(E) π2a2 + πab.

Solution:

The correct solution is (b). An explicit parametrization of the torus is given by f : (−π, π)×
(0, 2π) −→ R3,

f(x, y) =
(
(b+ a cosx) cos y, (b+ a cosx) sin y, a sin x

)
.

Then one computes

g(x, y) =
(
a2 0
0 (b+ a cosx)2

)
, K(x, y) = cosx

a(b+ a cosx) .
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Thus Ω = f({−π/2 < x < π/2}) and

A(Ω) =
∫ 2π

0

∫ π/2

−π/2
a(b+ a cosx) dxdy = 2π2ab+ 4πa2.

SC6 For Ω as in question SC5, the integral
∫

Ω
K dA equals:

(A) 4π.

(B) π2 b− a
a+ b

.

(C) 8πba
a2 + b2 .

(D) 2π
(
1 + 2ab

a2 + b2 ).

(E) 4π a2

a2 + b2 .

Solution:

The correct solution is (a). From question 5 we get
∫

Ω
K dA =

∫ 2π

0

∫ π/2

−π/2

cosx
a(b+ a cosx)a(b+ a cosx) dxdy = 4π.
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Problem 1
The sphere revisited

Consider the parametrization f given by the inverse of the stereographic projection S2 \ {(0, 0, 1)} −→ R2

from the North pole. Explicitly, f : R2 −→ S2 \ {(0, 0, 1)} is given by

f : (x, y) 7−→
( 2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
x2 + y2 − 1
1 + x2 + y2

)
.

(a) Compute the first fundamental form of f . Is f conformal?
Solution:

We have
fx =

(
2− 2x2 + 2y2

(1 + x2 + y2)2 ,
−4xy

(1 + x2 + y2)2 ,
4x

(1 + x2 + y2)2

)
.

fy =
(

−4xy
(1 + x2 + y2)2 ,

2 + 2x2 − 2y2

(1 + x2 + y2)2 ,
4y

(1 + x2 + y2)2

)
.

Then we can compute
g11 = 〈fx, fx〉 = 4

(1 + x2 + y2)2

Also g22 = g11 (since g11 is symmetric in x, y). Moreover, a direct computation shows g12 =
g21 = 〈fx, fy〉 = 0. So

g(x, y) = 4
(1 + x2 + y2)2

(
1 0
0 1

)
,

and f is conformal.
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Consider R2, the domain of the parametrization f . The metric distance between two points (x, y)
and (x′, y′) is defined as

inf
{
L(γ)

∣∣∣ γ : [0, 1]→ R2 piecewise smooth curve with γ(0) = (x, y), γ(1) = (x′, y′)
}
,

where the length L of the curve γ is defined as L(γ) :=
∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt, and g is the first

fundamental form of the parametrization f .

(b) Show that for any parallel, represented on R2 by a circle x2 + y2 = r2 for some r > 0, the metric
distance between (0, 0) and any of its points (x0, y0), depends only on r and is attained by the
curve s 7−→ s(x0, y0), defined for s ∈ [0, 1].

Hint: For a ∈ R,
∫

1
a2+s2 ds = 1

a
arctan( s

a
) + c.

Solution:

Fix (x0, y0) on the circle Cr := {x2 + y2 = r2} and let γ : [0, 1] −→ R2 be any piecewise C1

curve joining (0, 0) and (x0, y0). Let t′ = min{t > 0 | γ(t) ∈ Cr} and let (x′, y′) = γ(t′). Let
us show that L(γ|[0,t′]) ≥ L(γ̃) where γ̃(s) = s(x′, y′), defined for s ∈ [0, 1].
Indeed,

L(γ|[0,t′]) =
∫ t′

0

√
gγ(t)(γ′(t), γ′(t))dt = 2

∫ t′

0

|γ′(t)|
1 + γ(t)2dt ≥ 2

∫ t′

0

|γ(t)|′
1 + γ(t)2dt

= 2
[

arctan |γ(t)|
]t′

0
= 2

[
arctan |γ̃(t)|

]1
0

= 2
∫ 1

0

ds

1 + s2 = L(γ̃).

Finally we conclude noticing that L(γ) ≥ L(γ|[0,t′]) and that, by rotational symmetry of g,
L(γ̃) equals the length of s 7→ s(x0, y0).

(c) Prove that the distance between any two points on the sphere (which are not antipodal) is
attained by the great circular arc joining them.

Hint: you can either deduce it using (b) or give another proof, e.g. the one that was given in the
first lecture.
Solution:

Since SO(2) is a group of isometries acting transitively on S2 (i.e. given any two points, there
exists at least one isometry sending the first point to the second) we can assume without loss
of generality that one of the two points is the “south pole” S := (0, 0,−1). If q 6= N := (0, 0, 1)
then q = f(x◦, y◦) for some (x◦, y◦) ∈ R2. Then given any curve c : [0, 1] −→ S2 \N joining
S and q ∈ f({x2 + y2 = r2}) can be written as c̃ = f ◦ γ, for some γ : [0, t◦] −→ R2. By c).
the metric distance between (0, 0) and (x◦, y◦) is attained by the ray t 7→ t(x◦, y◦), (notice by
definition of length in local coordinates L(γ) = L(c)). Finally, any ray through the origin is
mapped to a great circular arc by f .
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Problem 2
Local isothermal coordinates on a minimal surface

(a) Suppose that U is a ball in the (x, y)-plane R2. Show that, given smooth functions A,B : U −→ R,
the equations ∂

∂x
Φ = A, ∂

∂y
Φ = B admit a solution Φ if and only if ∂

∂y
A = ∂

∂x
B holds.

Solution:

Let (x◦, y◦) be the center of U . Define Φ(x, y) :=
∫ x
x◦ A(t, y◦)dt+

∫ y
y◦ B(x, t)dt+ C. Then

Φx = A(x, y◦) +
∫ y

y◦
Bx(x, t)dt = A(x, y◦) +

∫ y

y◦
Ay(x, t)dt = A(x, y)

and Φy = B(x, y) as desired.

(b) Let U ⊂ R2 be a ball and let v : U −→ R be such that f : U −→ R3,

f(x, y) := (x, y, v(x, y))

is a minimal immersion (i.e. the mean curvature or the trace of the Weingarten map vanish for
all (x, y)). Show that v must satisfy the PDE

∂

∂x

(
vx
W

)
+ ∂

∂y

(
vy
W

)
= 0, (~)

whereW = W (x, y) :=
√

1 + v2
x + v2

y , and where the subindexes x and y denote partial derivatives.
Solution:

We compute fx = (1, 0, vx), fy = (0, 1, vy), then the matrix of the first fundamental form is

(gij) =
(

1 + v2
x vxvy

vxvy 1 + v2
y

)

with det g = W 2 and

(gij) = (gij)−1 = 1
W 2

(
1 + v2

y −vxvy
−vxvy 1 + v2

x

)
.

A Gauss map for f is ν = (−vx,−vy, 1)/W , and we compute fxx = (0, 0, vxx), fyy = (0, 0, vyy)
and fxy = (0, 0, vxy), so

〈fxx, ν〉 = vxx/W, 〈fyy, ν〉 = vyy/W, 〈fxy, ν〉 = vxy/W,

Then the matrix of the second fundamental form is

(hij) = 1
W

(
vxx vxy
vxy vyy

)

and the matrix of the Weingarten map is

(hij) = (gij)(hij) = 1
W 3

(
(1 + v2

y)vxx − vxvyvxy ∗
∗ (1 + v2

x)vyy − vxvyvxy

)
.
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Thus f is minimal, that is, the mean curvature of f is zero if and only if (1+v2
y)vxx−2vxvyvxy+

(1 + v2
x)vyy = 0. Now a computations shows that this equation is equivalent to (~).

(c) Show that equation (~) from part (b) implies

∂

∂x

(1 + v2
y

W

)
= ∂

∂y

(
vxvy
W

)
,

and deduce the existence of a potential Φ for the vector field (vxvy

W
,

1+v2
y

W
), that is, a function

Φ: U −→ R such that

∂

∂x
Φ = vxvy

W

∂

∂y
Φ =

1 + v2
y

W
.

Solution:

Since
(
vy

W

)
y

= −
(
vx

W

)
x
, we have

(
vxvy
W

)
y

= vxyvy
W
− vx

(
vx
W

)
x

= vxyvy
W
− vxxvx

W
+ v2

xWx

W 2

= vxyvy
W
− vxxvx

W
+

(W 2 − (1 + v2
y))Wx

W 2

Since W =
√

1 + v2
x + v2

y we have Wx = ∂
∂x

√
1 + v2

x + v2
y = (vxvxx + vyvyx)/W and thus

−vxxvx
W

+Wx = −vxxvx +WWx

W
= vyvyx

W
,

Therefore,
(
vxvy
W

)
y

= 2vxyvy
W

− (1 + y2)(Wx)
W 2 =

(1 + v2
y

W

)
x

Finally, the existence of Φ follows from (a).
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(d) Introduce new coordinates x̄ = x, ȳ = Φ(x, y) and check that the first fundamental form with
respect to the new coordinates is of the form

ḡ(x̄,ȳ) = λ(x̄, ȳ)
(

1 0
0 1

)
.

Compute the conformal factor λ(x̄, ȳ).

Hint: put (x̄, ȳ) = Ψ(x, y) := (x,Φ(x, y)) and compute the first fundamental form of the parame-
trization f ◦Ψ−1 : Ψ(U) −→ f(U), (x̄, ȳ) 7−→ f(Ψ−1(x̄, ȳ)), using the chain rule.
Solution:

We have

dΨ(x,y) =
 ∂x̄

∂x
∂x̄
∂y

∂ȳ
∂x

∂ȳ
∂y

 =
(

1 0
Φx Φy

)
=
(

1 0
vxvy

W

1+v2
y

W

)

Hence

dΨ−1
(x̄,ȳ) =

 1 0
− vxvy

1+v2
y

W
1+v2

y

(Ψ−1(x̄, ȳ)
)

Therefore, when computing the first fundamental form of f̄ := f ◦Ψ−1 we can use

df̄(x̄,ȳ) = dfΨ−1(x̄,ȳ)dΨ−1
(x̄,ȳ) =

 1 0
0 1
vx vy

( 1 0
− vxvy

1+v2
y

W
1+v2

y

)
◦Ψ−1(x̄, ȳ)

=


1 0

− vxvy

1+v2
y

W
1+v2

y

vx

1+v2
y

vyW
1+v2

y

 ◦Ψ−1(x̄, ȳ)

Then, the metric matrix at (x̄, ȳ) is given by

df̄T(x̄,ȳ)df̄(x̄,ȳ) =
 1 − vxvy

1+v2
y

vx

1+v2
y

0 W
1+v2

y

vyW
1+v2

y




1 0
− vxvy

1+v2
y

W
1+v2

y

vx

1+v2
y

vyW
1+v2

y



=

 (1+v2
y)2+v2

xv
2
y+v2

x

(1+v2
y)2 0

0 W 2(1+v2
y)

(1+v2
y)2

 =
 W 2

(1+v2
y) 0

0 W 2

(1+v2
y)



(e) Write the statement and proof of a theorem given in the lecture concerning the harmonicity of
the coordinate functions for an isothermal parametrization of a minimal surface.
Solution:

Proposition 5.7 in the notes.
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