Mathematical Foundations for Finance Exercise Sheet 10

Please hand in your solutions by 12:00 on Wednesday, November 30 via the course homepage.

Exercise 10.1 Let W be a Brownian motion with respect to P and \mathbb{F} , and for each partition Π of $[0, \infty)$, $t \ge 0$, and $\alpha \in [0, 1]$, define

$$I_t^{\alpha}(W;\Pi) := \sum_{t_i \in \Pi} \left(\alpha W_{t_i \wedge t} + (1-\alpha) W_{t_{i+1} \wedge t} \right) \left(W_{t_{i+1} \wedge t} - W_{t_i \wedge t} \right).$$

For a refining sequence of partitions (Π_n) of $[0,\infty)$ with mesh decreasing to zero, find

$$\lim_{n \to \infty} I_t^{\alpha}(W; \Pi_n).$$

What do you get for the cases when $\alpha = 0, \frac{1}{2}, 1$?

Hint: You may use Theorem 4.1.4 from Chapter 4.

Exercise 10.2 Let Y_1, Y_2, \ldots be a sequence of square-integrable and independent random variables. For each $n \in \mathbb{N}_0$, set

$$X_n = \sum_{i=1}^n Y_i,$$

and let \mathbb{F} be the filtration generated by X.

(a) Find What is the Doob decomposition $X = X_0 + M + A$ of X. Simplify in the case that the Y_i have the same distribution.

1 0

(b) Compute [M] and $\langle M \rangle$.

Simplify the above quantities in the case that the Y_i have the same distribution.

Hint. To find [M] and $\langle M \rangle$, write out their defining properties in discrete time and interpret Δ not as "jump", but as "increment".

Exercise 10.3 Let W be a Brownian motion with respect to P and \mathbb{F} . Prove that for each $0 \leq s < t$,

$$E[W_t^3 - W_s^3 \mid \mathcal{F}_s] = 3(t-s)W_s = E\left[\int_s^t 3W_u \, \mathrm{d}u \mid \mathcal{F}_s\right].$$

Updated: November 23, 2022

1/2

Conclude that $(W_t^3 - \int_0^t W_u \, du)_{t \ge 0}$ is a martingale. Hint: To prove the second equality, you may use that $\sup_{0 \le r \le t} |W_r|$ is integrable.

Can you guess a similar result for

$$E[W_t^n - W_s^n \mid \mathcal{F}_s], \quad n \in \mathbb{N}?$$