Mathematical Foundations for Finance Exercise Sheet 11

Please hand in your solutions by 12:00 on Wednesday, December 7 via the course homepage.

Exercise 11.1 (Applying Itô's formula) Let W be a Brownian motion with respect to P and \mathbb{F} . Using Itô's formula, write the following as stochastic integrals.

- (a) W_t^2 ,
- (b) $t^2 W_t$,
- (c) $\sin(2t W_t)$,
- (d) $\exp(at + bW_t)$, where $a, b \in \mathbb{R}$ are constants.

Using part (a), evaluate $\int_0^t W_s \, \mathrm{d}W_s$.

Solution 11.1

(a) Let $f(x) = x^2$. Then f is C^2 , and f'(x) = 2x and f''(x) = 2. Itô's formula then gives

$$W_t^2 = \int_0^t 2W_s \, \mathrm{d}W_s + \frac{1}{2} \int_0^t 2 \, \mathrm{d}s = 2 \int_0^t W_s \, \mathrm{d}W_s + t.$$

(b) Let $f(t,x) = t^2 x$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = 2tx$, $\frac{\partial f}{\partial x}(t,x) = t^2$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = 0$. Itô's formula then gives

$$t^2 W_t = 2 \int_0^t s W_s \, \mathrm{d}s + \int_0^t s^2 \, \mathrm{d}W_s.$$

(c) Let $f(t, x) = \sin(2t - x)$. Then f is C^2 , and we have $\frac{\partial f}{\partial t}(t, x) = 2\cos(2t - x)$, $\frac{\partial f}{\partial x}(t, x) = -\cos(2t - x)$ and $\frac{\partial^2 f}{\partial x^2}(t, x) = -\sin(2t - x)$. We then apply Itô's formula to get

$$\sin(2t - W_t) = \int_0^t 2\cos(2s - W_s) \, ds - \int_0^t \cos(2s - W_s) \, dW_s$$
$$-\frac{1}{2} \int_0^t \sin(2s - W_s) \, ds$$
$$= \int_0^t \left(2\cos(2s - W_s) - \frac{1}{2}\sin(2s - W_s)\right) \, ds$$
$$-\int_0^t \cos(2s - W_s) \, dW_s.$$

Updated: December 9, 2022

1 / 5

(d) Let $f(t,x) = \exp(at + bx)$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = a \exp(at + bx)$, $\frac{\partial f}{\partial x}(t,x) = b \exp(at + bx)$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = b^2 \exp(at + bx)$. Itô's formula then gives

$$\exp(at + bW_t) = 1 + \int_0^t a \exp(as + bW_s) \, \mathrm{d}s + \int_0^t b \exp(as + bW_s) \, \mathrm{d}W_s$$
$$+ \frac{1}{2} \int_0^t b^2 \exp(as + bW_s) \, \mathrm{d}s$$
$$= 1 + \int_0^t \left(a + \frac{b^2}{2}\right) \exp(as + bW_s) \, \mathrm{d}s$$
$$+ \int_0^t b \exp(as + bW_s) \, \mathrm{d}W_s,$$

as required.

Finally, rearranging the equality in part (a) gives

$$\int_0^t W_s \, \mathrm{d}W_s = \frac{1}{2}W_t^2 - \frac{1}{2}t.$$

Exercise 11.2 (Local martingales and Itô's formula) Let W be a Brownian motion with respect to P and \mathbb{F} .

- (a) Let $f \in C(\mathbb{R}; \mathbb{R})$. Show that the stochastic integral process $(\int_0^t f(W_s) dW_s)_{t \ge 0}$ is a continuous local martingale.
- (b) Let $f \in C^2(\mathbb{R};\mathbb{R})$. Show that $(f(W_t))_{t\geq 0}$ is a continuous local martingale if and only if $\int_0^t f''(W_s) \, \mathrm{d}s = 0$ for all $t \geq 0$.

Hint: You may use the fact that a continuous local martingale null at zero is a process of finite variation if and only if it is identically 0.

(c) Let $f \in C^2(\mathbb{R};\mathbb{R})$. Using (b), show that $(f(W_t))_{t\geq 0}$ is a continuous local martingale if and only if $f(x) = \alpha x + \beta$ for some $\alpha, \beta \in \mathbb{R}$.

Solution 11.2

- (a) First note that $(f(W_s))_{s\geq 0}$ is adapted (since W is adapted and f is continuous) with continuous paths (since W has continuous paths and f is continuous). In particular, $(f(W_s))_{s\geq 0}$ is predictable and locally bounded, and thus belongs to $L^2_{loc}(W)$. Since W is a (local) martingale null at zero, the stochastic integral process $(\int_0^t f(W_s) dW_s)_{s\geq 0}$ is thus a well-defined continuous local martingale.
- (b) By Itô's formula,

$$f(W_t) = f(W_0) + \int_0^t f'(W_s) \, \mathrm{d}W_s + \frac{1}{2} \int_0^t f''(W_s) \, \mathrm{d}s.$$

Updated: December 9, 2022

By part (a), we know that $(\int_0^t f'(W_s) \, dW_s)_{t \ge 0}$ is a continuous local martingale, and thus $(f(W_t))_{t \ge 0}$ is a continuous local martingale if and only if $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is also a continuous local martingale. But $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is a process of finite variation (indeed, for each $t \ge 0$, we have the equality $\int_0^t f''(W_s) \, ds = \int_0^t f''(W_s)^+ \, ds - \int_0^t f''(W_s)^- \, ds$, so that $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is the difference of two increasing processes), null at zero, and is thus a continuous local martingale if and only if it is identically zero. That is, $(f(W_t))_{t \ge 0}$ is a continuous local martingale if and only if $\int_0^t f''(W_s) \, ds = 0$ for all $t \ge 0$, as required.

(c) If $\int_0^t f''(W_s) \, ds = 0$ *P*-a.s. for all $t \ge 0$, then $f''(W_t) = 0$ *P*-a.s. for all $t \ge 0$. So for all $a \le b \in \mathbb{R}$,

$$0 = E\left[f''(W_t)\mathbb{1}_{W_t \in [a,b]}\right] = \int_a^b f''(x)\frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}} \,\mathrm{d}x.$$

Thus,

$$0 = \lim_{b \downarrow a} \frac{1}{b-a} \int_{a}^{b} f''(x) \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} \, \mathrm{d}x = f''(a) \frac{1}{\sqrt{2\pi t}} e^{-\frac{a^{2}}{2t}},$$

and hence f''(a) = 0. Since $a \in \mathbb{R}$ was arbitrary, this implies that $f'' \equiv 0$, and so $f' = \alpha$ for some $\alpha \in \mathbb{R}$, and hence $f = \alpha x + \beta$ for some $\beta \in \mathbb{R}$.

Conversely, suppose that $f(x) = \alpha x + \beta$ for some $\alpha, \beta \in \mathbb{R}$. Then f'' = 0, and thus

$$\int_0^t f''(W_s) \, \mathrm{d}s = 0, \qquad \forall t \ge 0.$$

This completes the proof.

Exercise 11.3 (From local martingale to martingale) Let M be a local martingale, and assume that $\sup_{0 \leq t \leq T} |M_t| \in L^1$ for some fixed T > 0. Prove that M is a martingale on [0, T].

Note. This implies that if $\sup_{0 \le t \le T} |M_t| \in L^1$ for all T > 0, then M is a martingale (on $[0, \infty)$).

Solution 11.3 First, M is adapted since it is a continuous local martingale, and it is integrable since for each $t \in [0, T]$, $|M_t| \leq \sup_{0 \leq t \leq T} |M_t| \in L^1$, so that

$$E\left[|M_t|\right] \leqslant E\left[\sup_{0 \leqslant t \leqslant T} |M_t|\right] < \infty.$$

Finally, fix $0 \leq s < t \leq T$. We need to show that

$$E[M_t \mid \mathcal{F}_s] = M_s$$

Updated: December 9, 2022

3 / 5

To this end, let $(\tau_n)_{n\in\mathbb{N}}$ be a localising sequence of M. Then we have

$$E[M_{t \wedge \tau_n} \mid \mathcal{F}_s] = M_{s \wedge \tau_n}, \qquad \forall n \in \mathbb{N}.$$
 (1)

Since $\tau_n \uparrow \infty$ as $n \to \infty$, then

$$M_{s \wedge \tau_n} \to M_s$$
 as $n \to \infty$ and $M_{t \wedge \tau_n} \to M_t$ as $n \to \infty$.

Moreover, $|M_{t \wedge \tau_n}| \leq \sup_{0 \leq t \leq T} |M_t| \in L^1$ for all n, so we may apply the (conditional) dominated convergence theorem to get

$$E[M_{t \wedge \tau_n} \mid \mathcal{F}_s] \to E[M_t \mid \mathcal{F}_s] \text{ as } n \to \infty.$$

Thus, taking limits as $n \to \infty$ in (1) yields $E[M_t | \mathcal{F}_s] = M_s$. Since $0 \leq s < t \leq T$ were arbitrary, it follows that M is a martingale on [0, T], as required.

Exercise 11.4 (Martingales and Itô's formula) Let W be a Brownian motion with respect to P and \mathbb{F} . Using Itô's formula, establish which of the following processes are martingales:

- (a) $(\sin W_t \cos W_t)_{t \ge 0}$,
- (b) $(\exp(\frac{1}{2}a^2t)\cos(aW_t-b))_{t\geq 0}$, where $a, b \in \mathbb{R}$ are constants,
- (c) $(W_t^3 3tW_t)_{t \ge 0}$.

Hint: You may use the fact that for any T > 0, the random variables $\max_{0 \le t \le T} W_t$ and $-\min_{0 \le t \le T} W_t$ have the same distribution as $|W_T|$.

Solution 11.4 By the same reasoning as in Exercise 11.2, we can show using Itô's formula that for $f \in C^2([0,\infty) \times \mathbb{R};\mathbb{R})$, the process $(f(t, W_t))_{t\geq 0}$ is a continuous local martingale if and only if

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s = 0, \qquad \forall t \ge 0.$$

- (a) Let $f(x) = \sin x \cos x$. Then f is C^2 , and $f(W_t) = \sin W_t \cos W_t$. Since $f''(x) = -\sin x + \cos x$, then $f'' \neq 0$, and thus Exercise 11.2(c) gives that $(\sin W_t \cos W_t)_{t \geq 0}$ is not a local martingale. Hence, it is also not a martingale.
- (b) Let $f(t,x) = \exp(\frac{1}{2}a^2t)\cos(ax-b)$. Then f is C^2 , and also we have that $\frac{\partial f}{\partial t}(t,x) = \frac{1}{2}a^2\exp(\frac{1}{2}a^2t)\cos(ax-b)$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = -a^2\exp(\frac{1}{2}a^2t)\cos(ax-b)$. Thus,

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s$$

=
$$\int_0^t \frac{1}{2} a^2 \exp\left(\frac{1}{2}a^2t\right) \cos(aW_t - b) - \frac{1}{2}a^2 \exp\left(\frac{1}{2}a^2t\right) \cos(aW_t - b) \, \mathrm{d}s$$

= 0,

Updated: December 9, 2022

4/5

for all $t \ge 0$. Since $\exp(\frac{1}{2}a^2t)\cos(aW_t - b) = f(t, W_t)$, it now follows that $(\exp(\frac{1}{2}a^2t)\cos(aW_t - b))_{t\ge 0}$ is a continuous local martingale. Moreover, for T > 0,

$$\max_{0 \le t \le T} \left| \exp\left(\frac{1}{2}a^2t\right) \cos(aW_t - b) \right| \le \exp\left(\frac{1}{2}a^2T\right) \in L^1.$$

It follows immediately from Exercise 11.3 that $(\exp(\frac{1}{2}a^2t)\cos(aW_t-b))_{t\geq 0}$ is a martingale.

(c) Let $f(t,x) = x^3 - 3tx$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = -3x$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = 6x$. We then have that

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s = \int_0^t 3W_s - 3W_s \, \mathrm{d}s = 0,$$

for all $t \ge 0$. Since $W_t^3 - 3tW_t = f(t, W_t)$, it follows that $(W_t^3 - 3tW_t)_{t\ge 0}$ is a continuous local martingale. Moreover, for T > 0,

$$\max_{0 \le t \le T} |W_t^3 - 3tW_t| \le \left(\max_{0 \le t \le T} |W_t|\right)^3 + 3T \max_{0 \le t \le T} |W_t|.$$

Note that

$$\max_{0 \le t \le T} |W_t| \le \max_{0 \le t \le T} W_t - \min_{0 \le t \le T} W_t$$

Using the hint, and the fact that $|W_T| \in L^3$, we get that $\max_{0 \le t \le T} |W_t| \in L^3$ (and hence also $\max_{0 \le t \le T} |W_t| \in L^1$), so that

$$\max_{0 \le t \le T} |W_t^3 - 3tW_t| \in L^1.$$

Since T > 0 was arbitrary, Exercise 11.3 then gives that $(W_t^3 - 3tW_t)_{t \ge 0}$ is a martingale.