Mathematical Foundations for Finance Exercise Sheet 4

Please hand in your solutions by 12:00 on Wednesday, October 19 via the course homepage.

Exercise 4.1 (Submartingales) Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$.

(a) Let X be a martingale. Show that for any bounded and convex function $f: \mathbb{R} \to \mathbb{R}$, the process $f(X) = (f(X_k))_{k \in \mathbb{N}_0}$ is a submartingale.

Could we replace "f is bounded" with a more general condition?

Hint: You may use that finite-valued convex functions are continuous.

(b) Let X be a submartingale, and let $\vartheta = (\vartheta_k)_{k \in \mathbb{N}}$ be a bounded, nonnegative and predictable process. Show that the stochastic integral process $\vartheta \bullet X$, defined by

$$\vartheta \bullet X_k = \sum_{j=1}^k \vartheta_j \Delta X_j = \sum_{j=1}^k \vartheta_j (X_j - X_{j-1}),$$

is a submartingale.

Conclude that $E[\vartheta \bullet X_k] \ge 0$ for all $k \in \mathbb{N}_0$.

(c) Let X be a submartingale and let τ be a stopping time. Show that the stopped process $X^{\tau} = (X_k^{\tau})_{k \in \mathbb{N}_0}$ defined by $X_k^{\tau} = X_{k \wedge \tau}$ is a submartingale.

Exercise 4.2 (Partition of sample space) Let $\mathcal{P} = \{P_j : j \in J\}$ be a partition of a set Ω (i.e. a collection of disjoint nonempty sets with union Ω). The index set J here can be arbitrary. Show that the family

$$\mathcal{U}(\mathcal{P}) := \Big\{\bigcup_{i \in I} P_i : I \subseteq J\Big\}.$$

consisting of all possible unions of sets P_j is a σ -field on Ω .

Note: When Ω is countable, the converse is also true; any σ -field on Ω is of the form $\mathcal{U}(\mathcal{P})$ for some partition \mathcal{P} of Ω , where the set J is at most countable.

Exercise 4.3 (Multinomial model) Let $m \in \mathbb{N}$, and define the sample space Ω by

$$\Omega := \{1, \dots, m\}^T = \Big\{ \omega = (x_1, \dots, x_T) : x_k \in \{1, \dots, m\} \Big\}.$$

Updated: October 12, 2022

1/2

Fix some constants $p_1, \ldots, p_m > 0$ with $\sum_{i=1}^m p_i = 1$. Set $\mathcal{F} = 2^{\Omega}$, and define the probability measure P on (Ω, \mathcal{F}) by

$$P[\{\omega\}] = P[\{(x_1, \dots, x_T)\}] = \prod_{i=1}^T p_{x_i}, \qquad \omega = (x_1, \dots, x_T) \in \Omega.$$

Finally, pick some distinct constants y_1, \ldots, y_m , and define the random variables $Y_k : \Omega \to \mathbb{R}$ by

$$Y_k(x_1,\ldots,x_T)=y_{x_k}, \qquad k=1,\ldots,T.$$

- (a) For k = 1, ..., T and j = 1, ..., m, find $P[Y_k = y_j]$.
- (b) Show that the random variables Y_1, \ldots, Y_T are i.i.d.
- (c) Let $(\mathcal{F}_k)_{k=0,\dots,T}$ be the filtration generated by the process $Y = (Y_k)_{k=1,\dots,T}$, so that $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for each $k = 1, \dots, T$,

$$\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k).$$

Using the notation from Exercise 4.2, find a partition \mathcal{P}_k of Ω such that $\mathcal{F}_k = \mathcal{U}(\mathcal{P}_k)$.

What is \mathcal{F}_T ?

Exercise 4.4 (Arbitrage opportunity) Fix u > d > -1 and a finite time horizon $T \in \mathbb{N}$. Let Y_1, \ldots, Y_T be i.i.d. random variables with distribution given by

$$P[Y_k = 1 + u] = p,$$
 $P[Y_k = 1 + d] = 1 - p$

where $p \in (0, 1)$ is fixed. Also, fix r > -1, and let $(\tilde{S}^0, \tilde{S}^1)$ be a binomial model with the price processes of the assets in our market given by $\tilde{S}_0^1 = 1$ and

$$\widetilde{S}_{k}^{0} = (1+r)^{k}, \qquad k = 0, \dots, T,
\frac{\widetilde{S}_{k}^{1}}{\widetilde{S}_{k-1}^{1}} = Y_{k}, \qquad k = 1, \dots, T.$$

- (a) By constructing an arbitrage opportunity, show that the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage if $r \leq d$.
- (b) Show that the same holds if $r \ge u$.