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Exercise 6.1 (Radon–Nikodým derivative) Consider a measurable space (Ω, F)
equipped with two probability measures Q ≪ P . The Radon–Nikodým theorem
asserts that there is a unique (up to P -a.s. equality) random variable D such that
D ⩾ 0 P -a.s. and

Q[A] = EP [D1A], ∀A ∈ F . (1)
The random variable D is called the Radon–Nikodým derivative of Q with respect to
P , and is thus denoted by dQ

dP
:= D. By standard measure-theoretic induction, one

can show that (1) implies that for all Q-integrable or nonnegative random variables
Y ,

EQ[Y ] = EP

[
dQ

dP
Y

]
. (2)

(a) Now equip the measurable space (Ω, F) with a filtration F = (Fk)k∈N0 and
define for each k ∈ N0 the random variable

Zk := EP

[
dQ

dP

∣∣∣∣∣ Fk

]
.

Note that by the definition of the Radon–Nikodým derivative, we have

EP

[
dQ

dP

]
= EP

[
dQ

dP
1Ω

]
= Q[Ω] = 1 < ∞,

so that dQ
dP

is P -integrable (and thus Zk is well-defined). Prove that

Zk = dQ

dP

∣∣∣∣
Fk

,

i.e. that for all A ∈ Fk, Q[A] = EP [Zk1A].

(b) Prove that Zk > 0 Q-a.s. for all k ∈ N0.

(c) Fix n ∈ N0 and suppose U is a Q-integrable and Fn-measurable random
variable. Prove the Bayes formula

EQ[U | Fk] = 1
Zk

EP [ZnU | Fk] Q-a.s. for 0 ⩽ k ⩽ n.
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(d) Prove that an F-adapted process N = (Nk)k∈N0 is a Q-martingale if and only
if the process ZN = (ZkNk)k∈N0 is a P -martingale.

Solution 6.1

(a) For all A ∈ Fk, we have

EP [Zk1A] = EP

[
EP

[dQ

dP

∣∣∣∣ Fk

]
1A

]
= EP

[
dQ

dP
1A

]
= Q[A],

as required.

(b) We have
Q[Zk = 0] = EP [Zk1{Zk=0}] = EP [0] = 0,

and hence Q[Zk > 0] = 1 − Q[Zk = 0] = 1, so that Zk > 0 Q-a.s., as required.

(c) Fix k ∈ {0, . . . , n}. Since U is Q-integrable and Fn-measurable, the same
measure-theoretic argument as for (1) ⇒ (2) yields from part (a) that

EP [Zn|U |] = EQ[|U |] < ∞,

so that ZnU is P -integrable. Thus EP [ZnU | Fk] is a well-defined, P -integrable
and Fk-measurable random variable. Now consider the random variable
1

Zk
|EP [ZnU | Fk]|. By part (b), Zk > 0 Q-a.s., and so 1

Zk
is well-defined

outside of a Q-null set. Also, recall by the definition of the conditional expec-
tation that EP [ZnU | Fk] is unique up to a P -null set. Since Q ≪ P , then also
EP [ZnU | Fk] is unique up to a Q-null set. Thus, 1

Zk
|EP [ZnU | Fk]| is unique

and well-defined up to a Q-null set (and thus we can take its Q-expectation).
Since it is also Fk-measurable, we can use part (a) to conclude that

EQ

[
1

Zk

∣∣∣EP [ZnU | Fk]
∣∣∣] = EP

[∣∣∣EP [ZnU | Fk]
∣∣∣] ⩽ EP

[
EP [Zn|U | | Fk]

]
= EP [Zn|U |] < ∞,

so that 1
Zk

EP [ZnU | Fk] is Q-integrable.

Next, fix A ∈ Fk. Since 1
Zk

EP [ZnU | Fk]1A is Fk-measurable and Q-integrable,
part (a) and the definition of the conditional expectation yield

EQ

[
1

Zk

EP [ZnU | Fk]1A

]
= EP

[
EP [ZnU | Fk]1A

]
= EP [ZnU1A] = EQ[Un1A],

because U1A is Q-integrable and Fn-measurable. Hence, we have for all A ∈ Fk

that
EQ

[
1

Zk

EP [ZnU | Fk]1A

]
= EQ[U1A],

and thus the result follows by the definition of the conditional expectation.
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(d) First, note that part (a) yields

EQ[|Nn|] = EP [Zn|Nn|] = EP |ZnNn|],

so that N is Q-integrable if and only if ZN is P -integrable. Next, Z is adapted
by construction and N by assumption. So also ZN is adapted.

Suppose that N is a Q-martingale. For all A ∈ Fk, we have

EP [ZnNn1A] = EQ[Nn1A] = EQ[Nk1A] = EP [ZkNk1A],

where the first and third equalities use that Nn1A and Nk1A are Fn- and
Fk-measurable, respectively, and are both Q-integrable. The second equality
uses that N is a Q-martingale. It follows that ZN is a P -martingale.

For the converse, we use (c) and the P -martingale property of ZN to write
EQ[Nn | Fk] = 1

Zk
EP [ZnNn | Fk] = 1

Zk
ZkNk = Nk Q-a.s. This completes the

proof.

Exercise 6.2 (Hedging) Consider an attainable payoff H ∈ L0
+(FT ), meaning

that there exists some admissible self-financing strategy φ =̂ (V0, ϑ) with VT (φ) = H
P -a.s. Prove (under no-arbitrage) that at each time k = 0, . . . , T , the value V H

k

of the European option with payoff H (at expiry T ) is equal to the value of the
replicating strategy, i.e.

V H
k = Vk(φ) P -a.s. for all k = 0, . . . , T.

Solution 6.2 We first claim that V H
k ⩾ Vk(φ) P -a.s. for all k = 0, . . . , T . To this

end, suppose for contradiction that there exists some k0 ∈ {0, . . . , T} such that
P [V H

k0 < Vk0(φ)] > 0. We set A := {V H
k0 < Vk0(φ)}. Note that since V H

T = VT (φ)
P -a.s., we have k0 ∈ {0, . . . , T − 1}. We construct a new self-financing strategy φ′

as follows. Up to time k0, we follow φ. After time k0, we follow φ on Ac up to the
expiry T , and on A we sell φ, buy the European option, and hold the option until
the expiry T . More precisely, we define the process ϑ′ = (ϑ′

k)k=0,...,T by ϑ′
0 = (0, 0),

and for all k = 1, . . . , T ,

ϑ′
k =

(ϑk, 0) if k ⩽ k0,

(ϑk, 0)1Ac + (0, 1)1A if k > k0.

The first and second coordinates of ϑ′
k are the number of shares of the stock and

the option at time k, respectively. Since A ∈ Fk0 , ϑ is predictable, and constants
are measurable with respect to any σ-field, it follows that ϑ′ is predictable. Let
φ′ =̂ (V0, ϑ′) be the corresponding self-financing strategy with initial wealth V0. Then
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we have

VT (φ′) = V0 + GT (ϑ′) = V0 +
T∑

j=1
(ϑ′

j)tr(∆S1
j , ∆V H

j )

= V0 +
k0∑

j=1
(ϑ′

j)tr(∆S1
j , ∆V H

j ) +
T∑

j=k0+1
(ϑ′

j)tr(∆S1
j , ∆V H

j )

= V0 +
k0∑

j=1
ϑtr

j ∆S1
j + 1Ac

T∑
j=k0+1

ϑtr
j ∆S1

j + 1A

T∑
j=k0+1

∆V H
j

= V0 + 1Ac

T∑
j=1

ϑtr
j ∆S1

j + 1A

k0∑
j=1

ϑtr
j ∆S1

j + 1A

T∑
j=k0+1

∆V H
j

= 1AcVT (φ) + 1AVk0(φ) + 1A

T∑
j=k0+1

∆V H
j

= 1AcVT (φ) + 1AVk0(φ) + 1A(V H
T − V H

k0 )
= 1AcVT (φ) + 1AVk0(φ) + 1AVT (φ) − 1AV H

k0

= VT (φ) + 1A(Vk0(φ) − V H
k0 ).

Since Vk0(φ) > V H
k0 on A, it follows that

VT (φ′) ⩾ VT (φ) and P [VT (φ′) > VT (φ)] = P [A] > 0.

Since φ and φ′ are both self-financing strategies with the same initial value V0, we
thus have an arbitrage opportunity. This is a contradiction, and so we must have
that V H

k ⩾ Vk(φ) P -a.s. for all k = 0, . . . , T .

It remains to show that V H
k ⩽ Vk(φ) P -a.s. for all k = 0, . . . , T . To see this, we

repeat the above argument with A = {V H
k0 > Vk0(φ)}, which yields a self-financing

strategy φ′ that has the same initial value V0 as φ, but with VT (φ′) ⩽ VT (φ) P -a.s.
and P [VT (φ′) < VT (φ)] > 0. Therefore the strategy φ − φ′ yields an arbitrage
opportunity, thus completing the proof.

Remark. The strategies which we construct in the above arguments are not necessarily
admissible. But this is no problem because we work in finite discrete time.

Exercise 6.3 (Put and call options) Let (S0, S1) be the (discounted) binomial
model with T = 1, u > 0 > d > −1, and p ∈ (0, 1). Fix K > 0, and define the
functions hC , hP : R → R by

hC(x) := (x − K)+ := max{0, x − K},

hP (x) := (K − x)+ := max{0, K − x}.

The European options with payoff functions hC and hP are called the European call
option and the European put option, respectively.
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(a) Construct a self-financing strategy φC =̂ (V C
0 , ϑC) such that

V1(φC) = hC(S1
1).

Write down explicitly the values of V C
0 and ϑC

1 .

(b) Construct a self-financing strategy φP =̂ (V P
0 , ϑP ) such that

V1(φP ) = hP (S1
1).

Write down explicitly the values of V P
0 and ϑP

1 .

(c) Prove the put–call parity relation

V P
0 − V C

0 = K − S1
0 .

(d) Compute limK→∞ V C
0 , limK↓0 V C

0 , limK→∞ V P
0 and limK↓0 V P

0 .

Explain why these values are not surprising.

Solution 6.3

(a) Consider a self-financing strategy φC =̂ (V C
0 , ϑC). By definition,

V1(φC) = V C
0 + ϑC

1 ∆S1
1 .

Since (S0, S1) is the binomial model, we have that either S1
1 = (1 + u)S1

0
or S1

1 = (1 + d)S1
0 . Also, since ϑC

1 is F0-measurable, it is a constant (i.e.
non-random). Thus, φ satisfies V1(φC) = hC(S1

1) if and only if

V C
0 + ϑC

1 uS1
0 = hC

(
(1 + u)S1

0

)
,

V C
0 + ϑC

1 dS1
0 = hC

(
(1 + d)S1

0

)
.

Subtracting the two equalities and rearranging gives

ϑC
1 = hC((1 + u)S1

0) − hC((1 + d)S1
0)

(u − d)S1
0

.

It remains to find V C
0 , which we can do by substituting the value of ϑC

1 into
either of the two previous equalities (we choose the first one) to get

V C
0 = hC

(
(1 + u)S1

0

)
− ϑC

1 uS1
0

= hC

(
(1 + u)S1

0

)
− hC((1 + u)S1

0) − hC((1 + d)S1
0)

(u − d)S1
0

uS1
0

= u

u − d
hC

(
(1 + d)S1

0

)
+ −d

u − d
hC

(
(1 + u)S1

0

)
.
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Note. Since u
u−d

+ −d
u−d

= 1 and u
u−d

∈ (0, 1), we can also write V C
0 = E∗[hC(S1

1)],
where E∗ denotes the expectation under the "risk-neutral" probability measure
P ∗ given by

P ∗[S1
1 = (1 + d)S1

0 ] = u

u − d
, P ∗[S1

1 = (1 + u)S1
0 ] = 1 − u

u − d
= −d

u − d
.

(b) The same reasoning as in part (a) yields

ϑP
1 = hP ((1 + u)S1

0) − hP ((1 + d)S1
0)

u − d
,

V P
0 = u

u − d
hP

(
(1 + d)S1

0

)
+ −d

u − d
hP

(
(1 + u)S1

0

)
.

Note. For the same risk-neutral probability measure P ∗ as in part (a), we can
write

V P
0 = E∗[hP (S1

1)].

(c) First we compute, for x ∈ R,

hP (x) − hC(x) = max{0, K − x} − max{0, x − K} = K − x.

Using this together with parts (a) and (b) yields

V P
0 − V C

0 = u

u − d
hP

(
(1 + d)S1

0

)
+ −d

u − d
hP

(
(1 + u)S1

0

)
− u

u − d
hC

(
(1 + d)S1

0

)
− −d

u − d
hC

(
(1 + u)S1

0

)
= u

u − d

(
K − (1 + d)S1

0

)
+ −d

u − d

(
K − (1 + u)S1

0

)
= K − S1

0 ,

as required.

Alternatively, we could use the expectation under the risk-neutral measure to
get

V P
0 − V C

0 = E∗[hP (S1
1) − hC(S1

1)] = E∗[K − S1
1 ] = K − E∗[S1

1 ].

We then compute

E∗[S1
1 ] = (1 + d)S1

0P ∗[S1
1 = (1 + d)S1

0 ] + (1 + u)S1
0P ∗[S1

1 = (1 + u)S1
0 ]

= (1 + d)S1
0

u

u − d
+ (1 + u)S1

0
−d

u − d

= S1
0 ,

and hence
V P

0 − V C
0 = K − S1

0 ,
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as required.

A third way to establish put-call parity is by using no-arbitrage.

Consider the following self-financing strategy. At time 0, buy one put option,
sell one call option, and buy one share of the stock. Then hold until time 1.
We have

V1(φ) = hP (S1
1) − hC(S1

1) + S1
1 = K − S1

1 + S1
1 = K.

By no-arbitrage, we must also have V0(φ) = K, i.e.

V P
0 − V C

0 + S1
0 = K,

as required.

(d) For each x > 0, we have

lim
K→∞

hC(x) = 0, lim
K↓0

hC(x) = x, lim
K→∞

hP (x) = ∞, lim
K↓0

hP (x) = 0.

Using the formula for V C
0 from part (a), we have

lim
K→∞

V C
0 = 0

and

lim
K↓0

V C
0 = u

u − d
(1 + d)S1

0 + −d

u − d
(1 + u)S1

0 = S1
0 .

By using put-call parity, we therefore have

lim
K→∞

V P
0 = ∞ and lim

K↓0
V P

0 = 0.

(Alternatively, we could also have used the formula for V P
0 from part (b).)

The intuition for these limits is as follows. The option to buy the stock at expiry
for a very high price is essentially worthless, which explains limK→∞ V C

0 = 0.
Conversely, the price of the option to sell the stock at expiry for a very high
price should also be very high, which explains limK→∞ V P

0 = ∞. Next, the
price of the option to buy the stock at expiry for a very low price should be
close to the price of the stock, which explains limK↓0 V C

0 = S1
0 . Conversely, the

option to sell the stock at expiry for a very low price is essentially worthless,
which explains limK↓0 V P

0 = 0.

Updated: November 3, 2022 7 / 7


