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Solution 1.1 Discrete Distribution
(a) Note that N only takes values in N>0, and that p ∈ (0, 1). Hence, we calculate

P[N ∈ R] =
∞∑

k=1
P[N = k] =

∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p) = 1,

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n ∈ N>0 we get

P[N ≥ n] =
∞∑

k=n

P[N = k] =
∞∑

k=n

(1− p)k−1p = (1− p)n−1p

∞∑
k=0

(1− p)k = (1− p)n−1,

where we used that p
∑∞

k=0(1− p)k = 1, as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N>0 can be calculated (if
it exists) as

E[N ] =
∞∑

k=1
k · P[N = k].

Thus, we get

E[N ] =
∞∑

k=1
k(1− p)k−1p =

∞∑
k=0

(k + 1)(1− p)kp =
∞∑

k=0
k(1− p)kp+

∞∑
k=0

(1− p)kp

= (1− p)E[N ] + 1,

where we again used that p
∑∞

k=0(1− p)k = 1, as was shown in (a). If E[N ] is finite, then we
immediately conclude that

E[N ] = 1
p
.

In order to show that E[N ] is indeed finite, we can use the ratio test on the series E[N ] =∑∞
k=1 k(1− p)k−1p. Indeed,

(k + 1)(1− p)kp

k(1− p)k−1p
= (1− p)k + 1

k
→ (1− p) < 1

as k →∞. Therefore the series converges, and E[N ] = 1
p .

(d) Let r ∈ R. Then, we calculate

E[exp{rN}] =
∞∑

k=1
exp{rk} · P[N = k] =

∞∑
k=1

exp{rk}(1− p)k−1p

= p exp{r}
∞∑

k=1
[(1− p) exp{r}]k−1 = p exp{r}

∞∑
k=0

[(1− p) exp{r}]k.
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Since (1− p) exp{r} is strictly positive, the sum on the right hand side converges if and only
if (1 − p) exp{r} < 1, which is equivalent to r < − log(1 − p). Hence, E[exp{rN}] exists if
and only if r < − log(1− p), and in this case we have

MN (r) = E[exp{rN}] = p exp{r} 1
1− (1− p) exp{r} = p exp{r}

1− (1− p) exp{r} .

(e) For r < − log(1− p) we have

d

dr
MN (r) = d

dr

p exp{r}
1− (1− p) exp{r} = p exp{r}[1− (1− p) exp{r}] + p exp{r}(1− p) exp{r}

[1− (1− p) exp{r}]2

= p exp{r}
[1− (1− p) exp{r}]2 .

Hence, we get

d

dr
MN (r)

∣∣
r=0 = p exp{0}

[1− (1− p) exp{0}]2 = p

[1− (1− p)]2 = p

p2 = 1
p
.

We observe that d
drMN (r)

∣∣
r=0 = E[N ], which holds in general for all random variables for

which the moment generating function exists in an interval around 0.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

P[Y ∈ R] =
∫ ∞
−∞

fY (x) dx =
∫ ∞

0
λ exp{−λx} dx = [− exp{−λx}]∞0 = [−0− (−1)] = 1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2 we calculate

P[y1 ≤ Y ≤ y2] =
∫ y2

y1

fY (x) dx =
∫ y2

y1

λ exp{−λx} dx = [− exp{−λx}]y2
y1

= exp{−λy1} − exp{−λy2}.

(c) The expectation and the second moment of an absolutely continuous random variable can be
calculated (if they exist) as

E[Y ] =
∫ ∞
−∞

xfY (x) dx and E[Y 2] =
∫ ∞
−∞

x2fY (x) dx.

Thus, using partial integration, we get

E[Y ] =
∫ ∞

0
xλ exp{−λx} dx = [−x exp{−λx}]∞0 +

∫ ∞
0

exp{−λx} dx

= 0 +
[
− 1
λ

exp{−λx}
]∞

0
= 1

λ
.

The variance Var(Y ) can be calculated as

Var(Y ) = E[Y 2]− E[Y ]2 = E[Y 2]− 1
λ2 .
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For the second moment E[Y 2] we get, again using partial integration,

E[Y 2] =
∫ ∞

0
x2λ exp{−λx} dx =

[
−x2 exp{−λx}

]∞
0 +

∫ ∞
0

2x exp{−λx} dx

= 0 + 2
λ
E[Y ] = 2

λ2 ,

from which we can conclude that

Var(Y ) = 2
λ2 −

1
λ2 = 1

λ2 .

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{−λx} goes much faster to 0 than x or x2 go to infinity, for all λ > 0.

(d) Let r ∈ R. Then, we calculate

E[exp{rY }] =
∫ ∞

0
exp{rx}λ exp{−λx} dx =

∫ ∞
0

λ exp{(r − λ)x} dx.

The integral on the right hand side and therefore also E[exp{rY }] exist if and only if r < λ.
In this case we have

MY (r) = E[exp{rY }] = λ

r − λ
[exp{(r − λ)x}]∞0 = λ

r − λ
(0− 1) = λ

λ− r
,

and therefore
logMY (r) = log

(
λ

λ− r

)
.

(e) For r < λ we have

d2

dr2 logMY (r) = d2

dr2 log
(

λ

λ− r

)
= d2

dr2 [log(λ)− log(λ− r)] = d

dr

1
λ− r

= 1
(λ− r)2 .

Hence, we get
d2

dr2 logMY (r)|r=0 = 1
(λ− 0)2 = 1

λ2 .

We observe that d2

dr2 logMY (r)|r=0 = Var(Y ), which holds in general for all random variables
for which the moment generating function exists in an interval around 0.

Solution 1.3 Gaussian Distribution

(a) Let r ∈ R. Then, we calculate

MX(r) = E [exp {rX}] =
∫ ∞
−∞

exp{rx} 1√
2πσ

exp
{
−1

2
(x− µ)2

σ2

}
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1

2
x2 − 2(µ+ rσ2)x+ µ2

σ2

}
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1

2
x2 − 2(µ+ rσ2)x+ µ2 + 2rµσ2 + r2σ4 − 2rµσ2 − r2σ4

σ2

}
dx

= exp
{
rµ+ r2σ2

2

}∫ ∞
−∞

1√
2πσ

exp
{
−1

2
[x− (µ+ rσ2)]2

σ2

}
dx

= exp
{
rµ+ r2σ2

2

}
,

where the last equality holds true since we integrate the density of a normal distribution with
mean µ+ rσ2 and variance σ2.
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(b) The moment generating function Ma+bX of a+ bX can be calculated as

Ma+bX(r) = E [exp {r(a+ bX)}] = exp {ra}E [exp {rbX}] = exp {ra}MX(rb),

for all r ∈ R. Using the formula for the moment generating function of X given in part (a),
we get

Ma+bX(r) = exp {ra} exp
{
rbµ+ (rb)2σ2

2

}
= exp

{
r(a+ bµ) + r2b2σ2

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation a+ bµ and variance b2σ2. Since the moment generating function (if it exists in an
interval around 0) uniquely determines the distribution, see Lemma 1.2 of the lecture notes
(version of February 7, 2022), we conclude that

a+ bX ∼ N (a+ bµ, b2σ2).

(c) Using the independence of X1, . . . , Xn, the moment generating function MY of Y =
∑n

i=1 Xi

can be calculated as

MY (r) = E [exp {rY }] = E

[
exp

{
r

n∑
i=1

Xi

}]
=

n∏
i=1

E [exp {rXi}] =
n∏

i=1
MXi

(r)

=
n∏

i=1
exp

{
rµi + r2σ2

i

2

}
= exp

{
r

n∑
i=1

µi +
r2∑n

i=1 σ
2
i

2

}
,

for all r ∈ R. This is equal to the moment generating function of a Gaussian random variable
with expectation

∑n
i=1 µi and variance

∑n
i=1 σ

2
i . We conclude that

n∑
i=1

Xi ∼ N

(
n∑

i=1
µi,

n∑
i=1

σ2
i

)
.

Solution 1.4 χ2-Distribution

(a) Let r ∈ R. The moment generating function MXk
of Xk can be calculated as

MXk
(r) = E [exp{rXk}] =

∫ ∞
0

exp{rx} 1
2k/2Γ(k/2)

xk/2−1 exp{−x/2} dx

=
∫ ∞

0

1
2k/2Γ(k/2)

xk/2−1 exp{−x(1/2− r)} dx.

This integral (and consequently the moment generating function) exists if and only if r < 1/2.
Let r < 1/2. Then, we use the substitution

u = x(1/2− r), dx = 1
1/2− r du.

We get

MXk
(r) =

∫ ∞
0

1
2k/2Γ(k/2)

uk/2−1
(

1
1/2− r

)k/2−1
exp{−u} 1

1/2− r du

= 1
2k/2

1
(1/2− r)k/2

1
Γ(k/2)

∫ ∞
0

uk/2−1 exp{−u} du

= 1
(1− 2r)k/2 ,
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where in the last equality we used the definition of the gamma function

Γ(z) =
∫ ∞

0
uz−1 exp{−u} du, for z ∈ R.

(b) For all r < 1/2 the moment generating function MZ2 of Z2 is given by

MZ2(r) = E
[
exp

{
rZ2}] =

∫ ∞
−∞

exp
{
rx2} 1√

2π
exp

{
−x

2

2

}
dx

=
∫ ∞
−∞

1√
2π

exp
{
−x

2(1− 2r)
2

}
dx

= (1− 2r)−1/2
∫ ∞
−∞

1√
2π(1− 2r)−1/2

exp
{
− x2

2(1− 2r)−1

}
dx

= 1
(1− 2r)1/2

= MX1(r),

where the second to last equality holds true since we integrate the density of a normal
distribution with mean 0 and variance (1− 2r)−1 > 0. We conclude that Z2 (d)= X1.

(c) Using that Z1, . . . , Zk are i.i.d., the moment generating function MY of Y =
∑k

i=1 Z
2
i is given

by

MY (r) = E [exp {rY }] = E

[
exp

{
r

k∑
i=1

Z2
i

}]
=

k∏
i=1

E
[
exp

{
rZ2

i

}]
=
(
MZ2

1
(r)
)k

= 1
(1− 2r)k/2 = MXk

(r),

for all r < 1/2. We conclude that
∑k

i=1 Z
2
i

(d)= Xk.
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