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Solution 11.1 Claim Frequency Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (vehicle class) has 2 risk
characteristics:

β1,1 (weight over 60 kg and more than two gears) and β1,2 (other).

The second criterion (vehicle age) also has 2 risk characteristics:

β2,1 (at most one year) and β2,2 (more than one year).

The third criterion (geographic zone) has 3 risk characteristics:

β3,1 (large cities), β3,2 (middle-sized towns) and β3,3 (smaller towns and countryside).

We write Nl1,l2,l3 for the numbers of claims, vl1,l2,l3 for the volumes and λl1,l2,l3 for the claim
frequencies of the risk classes (l1, l2, l3), 1 ≤ l1 ≤ 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 3. We assume that all
Nl1,l2,l3 are independent with

Nl1,l2,l3 ∼ Poi(λl1,l2,l3vl1,l2,l3),

and define
Xl1,l2,l3 = Nl1,l2,l3

vl1,l2,l3
.

In particular, we have

λl1,l2,l3 = E
[
Nl1,l2,l3
vl1,l2,l3

]
= E [Xl1,l2,l3 ] .

We model
g(λl1,l2,l3) = g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,1 = β3,1 = 0. Moreover, we define

β = (β0, β1,2, β2,2, β3,2, β3,3)′ ∈ Rr+1,

where r = 4. Similarly as in Exercise 10.1, we relabel the risk classes with the index
m ∈ {1, . . . ,M}, where M = 2 · 2 · 3 = 12, define X = (X1, . . . , XM )′ and the design matrix
Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . , 12}. According to
Example 7.8 of the lecture notes (version of February 7, 2022), Xm = Nm/vm belongs to the
exponential dispersion family with cumulant function b(·) = exp{·}, θm = log λm, wm = vm
and dispersion parameter φ = 1, i.e. we have

[Zβ]m = logE[Xm] = logE
[
Nm
vm

]
= log λm = θm,
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where [Zβ]m denotes the m-th element of the vector Zβ. Summarizing, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF(θm = [Zβ]m, φ = 1, wm = vm, b(·) = exp{·}),

for all m ∈ {1, . . . ,M}. As b(·) = exp{·}, we also have b′(·) = exp{·}, where b′ denotes the
first derivative of b. In particular, the log-link function g(·) = log(·) is equal to the canonical
link function h(·) = (b′)−1(·) = log(·) in the Poisson model. Therefore, we can use equation
(7.35) of the lecture notes (version of February 7, 2022): the MLE β̂

MLE
of β is the solution

of
Z ′V b′(Zβ) = Z ′V exp{Zβ} != Z ′VX, (1)

where the weight matrix V is given by V = diag(v1, . . . , vM ), see also Proposition 7.10 of
the lecture notes (version of February 7, 2022). Equation (1) has to be solved numerically.
We refer to Listing 1 for the application of this GLM model in R. The resulting MLEs of
the parameters β0, β1,2, β2,2, β3,2, β3,3 are given in the first row of Table 1. We observe that
insureds with a vehicle with weight over 60 kg and more than two gears tend to cause more
claims than insureds with other vehicles. Analogously, if the vehicle is at most one year old,
we expect more claims than if it is older. Regarding the geographic zone, we see that driving
in middle-sized towns leads to fewer claims than driving in large cities. Moreover, driving in
smaller towns and countryside leads to even fewer claims than driving in middle-sized towns.
Similarly as the log-linear Gaussian regression model discussed in Exercise 10.1, the GLM
framework allows for calculating parameter uncertainties and hypothesis testing. According
to the R output, for the individual parameters we get the p-values listed in the second row of
Table 1. These p-values are all substantially smaller than 0.05 and, thus, all the parameters
are significantly different from zero.

β̂0 β̂1,2 β̂2,2 β̂3,2 β̂3,3
MLE -1.4351 -0.2371 -0.5019 -0.4036 -1.6571
p-value ≈ 0 0.0009 ≈ 0 ≈ 0 ≈ 0

Table 1: MLEs of the parameters β0, β1,2, β2,2, β3,2, β3,3 and corresponding p-values.

Listing 1: R code for Exercise 11.1 (a).
1 ### Determine the design matrix Z
2 class <- factor (c(rep (1 ,6) , rep (2 ,6)))
3 age <- factor (c(rep (1 ,3) , rep (2 ,3) , rep (1 ,3) , rep (2 ,3)))
4 zone <- factor (c(rep (1:3 ,4)))
5 volumes <- c(1 ,2 ,5 ,4 ,9 ,70 ,2 ,3 ,6 ,8 ,15 ,50)*100
6 counts <- c(25 ,15 ,15 ,60 ,90 ,210 ,45 ,45 ,30 ,80 ,120 ,90)
7 Z <- model . matrix ( counts ~ class + age + zone)
8
9 ### Store design matrix Z ( without intercept term), counts and volumes in one dataset

10 data <- as.data. frame ( cbind (Z[,-1], counts , volumes ))
11
12 ### Apply GLM
13 d.glm <- glm( counts ~ class2 + age2 + zone2 + zone3 , data=data , offset =log( volumes ),
14 family = poisson ())
15 summary (d.glm)

(b) The plots of the observed and the fitted claim frequencies against the vehicle class, the vehicle
age and the geographic zone are given in Figure 1, the corresponding R code in Listing 2.
Note that the observed and the fitted marginal claim frequencies are always the same. This is
a direct consequence of equation (1) above, which ensures that the observed and the fitted
total marginal sums are the same (if we use the same volumes again), see also the remarks
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after Proposition 7.10 in the lecture notes (version of February 7, 2022). Moreover, in the
marginal plot for the vehicle class we do not see that insureds with a vehicle with weight
over 60 kg and more than two gears tend to cause more claims than insureds with other
vehicles, as we would have expected after the discussion at the end of part (a). The reason
for this peculiarity is that the MLE β̂1,2 is driven by the risk cells with the biggest volumes
(v6 = 7’000 and v12 = 5’000). However, in these risk cells with the biggest volumes we observe
very low claim frequencies. This implies that these risk cells have a small impact on the mean
claim frequency. As a consequence, the resulting mean claim frequency is of similar size for
both vehicles with weight over 60 kg and more than two gears and for other vehicles. For the
other variables vehicle age and geographic zone we again see the same results as in part (a).
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Figure 1: Observed and fitted claim frequencies against the vehicle class, the vehicle age and the
geographical zone.

Listing 2: R code for Exercise 11.1 (b).
1 ### Store features , observed numbers of claims and fitted numbers of claims in one dataset
2 data2 <- as.data. frame ( cbind (class , age , zone , volumes , counts , fitted (d.glm )))
3 colnames ( data2 )[5:6] <- c(" observed "," fitted ")
4
5 ### Marginal claim frequencies for the two class categories
6 library (plyr)
7 class .comp <- ddply (data2 , .( class ), summarise , volumes =sum( volumes ), observed =sum( observed ),
8 fitted =sum( fitted ))
9 par(mar=c(5.1 , 4.6 , 4.1 , 2.1))

10 barplot (t(as. matrix ( class .comp [ ,3:4]/ class .comp [ ,2])) , beside =TRUE ,
11 names .arg=c(" weight > 60 kg , nr. of gears > 2", " other "), main =" Claim frequencies ",
12 ylim=c(0 ,0.15) , xlab =" Vehicle class ", ylab =" Mean claim frequency ", legend .text=FALSE ,
13 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
14 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
15
16 ### Marginal claim frequencies for the two age categories
17 age.comp <- ddply (data2 , .( age), summarise , volumes =sum( volumes ), observed =sum( observed ),
18 fitted =sum( fitted ))
19 barplot (t(as. matrix (age.comp [ ,3:4]/ age.comp [ ,2])) , beside =TRUE ,
20 names .arg=c(" at most one year", "two years or more "), main =" Claim frequencies ",
21 ylim=c(0 ,0.15) , xlab =" Vehicle age", ylab =" Mean claim frequency ", legend .text=FALSE ,
22 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
23 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
24
25 ### Marginal claim frequencies for the three zone categories
26 zone.comp <- ddply (data2 , .( zone), summarise , volumes =sum( volumes ), observed =sum( observed ),
27 fitted =sum( fitted ))
28 barplot (t(as. matrix (zone.comp [ ,3:4]/ zone.comp [ ,2])) , beside =TRUE ,
29 names .arg=c(" large cities ", " medium towns ", " small towns "), main =" Claim frequencies ",
30 ylim=c(0 ,0.15) , xlab =" Geographic zone", ylab =" Mean claim frequency ", legend .text=FALSE ,
31 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
32 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
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(c) The Tukey-Anscombe plot given in Figure 2 can be generated by the R code of Listing 3.
The plot looks rather fine in the sense that we do not observe any structure. However, we
remark that we only have 12 observations in this example and, thus, it is difficult to detect
possible patterns and to make a clear statement.
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Figure 2: Tukey-Anscombe plot.

Listing 3: R code for Exercise 11.1 (c).
1 ### Deviance residuals
2 dev.red <- residuals .glm(d.glm)
3
4 ### Tukey - Anscombe plot
5 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
6 plot( data2$fitted , dev.red , main =" Tukey - Anscombe plot",
7 xlab =" Fitted expected numbers of claims ", ylab =" Deviance residuals ",
8 ylim=c(-max(abs(dev.red )), max(abs(dev.red ))) , cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
9 abline (h=0, col =" red ")

(d) We perform two tests in order to check if there is statistical evidence that the classification
into the geographic zones could be omitted. Note that in part (a) we have seen that we tend
to have considerably fewer claims for drivers in smaller towns and countryside than for drivers
in middle-sized towns. The same holds true for middle-sized towns and large cities. Thus, we
would expect that the classification into the three different geographic zones is reasonable.
Now we investigate this. The estimates of the expected values of Xm are given by

µ̂m = b′(θ̂m) = exp
{
θ̂m

}
= exp

{[
Zβ̂

MLE]
m

}
,

for all m = 1, . . . ,M , and we write µ̂ = (µ̂1, . . . , µ̂M )′. According to page 207 of the lecture
notes (version of February 7, 2022), the scaled deviance statistics is given by

D∗(X, µ̂) = 2
φ

M∑
m=1

wm(Xmh(Xm)− b[h(Xm)]−Xmh(µ̂m) + b[h(µ̂m)])

= 2
M∑
m=1

vm (Xm logXm −Xm −Xm log µ̂m + µ̂m) . (2)
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Moreover, since for the Poisson case we have φ = 1, the scaled deviance statistics D∗(X, µ̂)
and the deviance statistics D(X, µ̂) are the same. In order to check whether there is statistical
evidence that the classification into the geographic zones could be omitted, we define the null
hypothesis

H0 : β3,2 = β3,3 = 0.

Thus, in the reduced model we set the above p = 2 variables equal to 0. Then, we can
recalculate β̂

MLE
H0

for this reduced model and define

µ̂H0 = exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.40) of the
lecture notes (version of February 7, 2022), the test statistic

X2 = D∗(X, µ̂H0)−D∗(X, µ̂).

has approximately a χ2-distribution with df = p = 2 degrees of freedom. We get

X2 ≈ 389.882,

which corresponds to a p-value of approximately 2.179 · 10−85, which is basically 0. Thus,
we can reject H0 at significance level of 5%. Since we can reject H0 using this test, we
can conclude that there seems to be no statistical evidence that the classification into the
geographic zones could be omitted. For the R code used in part (d) we refer to Listing 4.

Listing 4: R code for Exercise 11.1 (d).
1 ### Deviance statistics of the full model
2 D.full <- d. glm$deviance
3
4 ### Fit the reduced model
5 d.glm .2 <- glm( counts ~ class2 + age2 , data=data , offset =log( volumes ), family = poisson ())
6 summary (d.glm .2)
7
8 ### Deviance statistics of the reduced model
9 D. reduced <- d.glm .2 $deviance

10
11 ### Calculate the test statistic X^2
12 X.2 <- D.reduced -D.full
13
14 ### Calculation of the corresponding p- value
15 pchisq (X.2, 2, lower .tail= FALSE )
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Solution 11.2 Claim Frequency Modeling with Neural Networks

(a) The Poisson deviance statistics calculated on the datasets trainset and testset with the R
code of Listing 5 are given in the first column of Table 2.

GLM NN (100 epochs) NN (1’000 epochs)
deviance statistics trainset 1’314.7 709.7 111.6
deviance statistics testset 1’454.3 1’070.2 1’523.5

Table 2: Deviance statistics.

Listing 5: R code for Exercise 11.2 (a).
1 ### Apply GLM (on the training set)
2 d.glm <- glm( ClaimNb ~ VehPower + VehAge +DrivAge , data=trainset , offset =log( Exposure ),
3 family = poisson ())
4 summary (d.glm)
5
6 ### Deviance statistics on training set
7 predtrain <- predict (d.glm , trainset , type =" response ")
8 obstrain <- trainset$ClaimNb
9 ( Deviancetrain <- 2* sum(log (( obstrain / predtrain )^ obstrain )- obstrain + predtrain ))

10 d. glm$deviance ### check deviance statistics on training set
11
12 ### Deviance statistics on test set
13 predtestGLM <- predict (d.glm , testset , type =" response ")
14 obstest <- testset$ClaimNb
15 ( Deviancetest <- 2* sum(log (( obstest / predtestGLM )^ obstest )- obstest + predtestGLM ))

(b) We fit the neural network for 100 gradient descent steps, see the R code given in Listing 6 and
use the resulting model to calculate the Poisson deviance statistics on the datasets trainset
and testset, see the second column of Table 2. We observe that the neural network leads to
smaller values of the deviance statistics on both the datasets trainset and testset. This
is an indication that the neural network model has better predictive power than the GLM
model. We remark that a simple GLM model like the one used in this exercise usually is
not able to cope with interactions between the tariff criteria, in contrast to neural network
models. This might explain the lower deviance statistics observed for the neural network
model on the data testset. However, we do not further investigate this here.

(c) We perform the exact same fitting procedure as in part (b), with the only difference that
we use 1’000 gradient descent steps instead of only 100. The resulting Poisson deviance
statistics on the datasets trainset and testset are given in the third column of Table 2.
On the one hand, we see that the deviance statistics on the dataset trainset used during
training is smaller than for the GLM model of part (a) and the neural network model with
100 gradient descent steps of part (b). However, this “better” fit is deceiving. In fact, the
deviance statistics on the dataset testset is bigger than for the GLM model of part (a) and
the neural network model with 100 gradient descent steps of part (b). We emphasize that the
dataset testset has not been seen during training and, thus, is the correct dataset to analyze
the predictive power of a fitted model. We conclude that with 1’000 gradient descent steps
we are in the situation of overfitting to the training data trainset. Therefore, the number of
gradient descent steps has to be chosen carefully. Usually, one splits the available dataset
into a learning set and a validation set. The learning set is then used to perform the gradient
descent steps and to fit the model. The validation set can be used to track over-fitting to
the learning set. As long as the deviance statistics on the validation set decreases, we are
learning additional model structure. Once the deviance statistics on the validation set starts
to increase again, we reach the phase of over-fitting where we are not learning (true) model
structure anymore but rather peculiarities of the learning set, which is undesirable.
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Listing 6: R code for Exercise 11.2 (b) and (c) (Neural network model).
1 ### Features , volumes , responses and initial estimate
2 Ztrain <- model . matrix (data=trainset , ClaimNb ~ VehPower + VehAge + DrivAge )
3 trainset [ ,6:30] <- as.data. frame ( Ztrain [ , -1])
4 Ztest <- model . matrix (data=testset , ClaimNb ~ VehPower + VehAge + DrivAge )
5 testset [ ,6:30] <- as.data. frame ( Ztest [ , -1])
6 featlearn <- data. matrix ( trainset [ ,6:30])
7 feattest <- data. matrix ( testset [ ,6:30])
8 vollearn <- as. vector (log( trainset$Exposure ))
9 voltest <- as. vector (log( testset$Exposure ))

10 resplearn <- as. vector ( trainset$ClaimNb )
11 resptest <- as. vector ( testset$ClaimNb )
12 lambda0 <- sum( trainset$ClaimNb )/ sum( trainset$Exposure )
13
14 ### Keras model
15 seed1 <- 100
16 use_session_with_seed ( seed1 )
17 Design <- layer_input ( shape =c(25) , dtype =" float32 ", name =" Design ")
18 LogVol <- layer_input ( shape =c(1) , dtype =" float32 ", name =" LogVol ")
19 Network <- Design %>%
20 layer_dense ( units =20 , activation =" tanh ") %>%
21 layer_dense ( units =10 , activation =" tanh ") %>%
22 layer_dense ( units =1, activation =" linear ", name =" Network ",
23 weights =list( array (0, dim=c(10 ,1)) , array (log( lambda0 ),dim=c (1))))
24 Response <- list(Network , LogVol ) %>%
25 layer_add (name =" Add ") %>%
26 layer_dense ( units =1, activation =k_exp , name =" Response ", trainable =FALSE ,
27 weights =list( array (1, dim=c(1 ,1)) , array (0, dim=c (1))))
28 model <- keras_model ( inputs =c(Design , LogVol ), outputs =c( Response ))
29 model %>% compile ( optimizer = optimizer_nadam (), loss =" poisson ")
30
31 ### Prepare features and responses for keras and fit the neural network model
32 xlearn = list( Design =featlearn , LogVol = vollearn )
33 ylearn = list( Response = resplearn )
34 xtest = list( Design =feattest , LogVol = voltest )
35 ytest = list( Response = resptest )
36 epochs <- 100 ### c) 1000
37 model %>% fit(x=xlearn , y=ylearn , epochs =epochs , verbose =1)
38
39 ### Deviance statistics on training set
40 predtrain <- as. vector ( model %>% predict ( xlearn ))
41 obstrain <- trainset$ClaimNb
42 ( Deviancetrain <- 2* sum(log (( obstrain / predtrain )^ obstrain )- obstrain + predtrain ))
43
44 ### Deviance statistics on test set
45 predtestNN <- as. vector ( model %>% predict ( xtest ))
46 obstest <- testset$ClaimNb
47 ( Deviancetest <- 2* sum(log (( obstest / predtestNN )^ obstest )- obstest + predtestNN ))

Solution 11.3 Claim Severity Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (area code) has 6 risk
characteristics:

β1,1 (A), β1,2 (B), β1,3 (C), β1,4 (D), β1,5 (E) and β1,6 (F).

The second criterion (brand of the vehicle) has 11 risk characteristics:

β2,1 (B1), β2,2 (B10), . . . , β2,6 (B14), β2,7 (B2), . . . , β2,11 (B6).

The third criterion (diesel/fuel) has 2 risk characteristics:

β3,1 (diesel) and β3,2 (regular fuel).

Therefore, we consider risk classes (l1, l2, l3), 1 ≤ l1 ≤ 6, 1 ≤ l2 ≤ 11, 1 ≤ l3 ≤ 2. We write
nl1,l2,l3 for the numbers of claims in risk class (l1, l2, l3) and we only consider risk classes with
nl1,l2,l3 > 0. The nl1,l2,l3 individual claim sizes in risk class (l1, l2, l3) are denoted by Y (i)

l1,l2,l3
,
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i = 1, . . . , nl1,l2,l3 . We assume that all Y (i)
l1,l2,l3

are independent with

Y
(i)
l1,l2,l3

∼ Γ(γ, cl1,l2,l3),

where γ > 0 is a global shape parameter and cl1,l2,l3 > 0 a risk-class dependent scale parameter.
The total claim amount Yl1,l2,l3 in risk class (l1, l2, l3) is then given by

Yl1,l2,l3 =
nl1,l2,l3∑
i=1

Y
(i)
l1,l2,l3

∼ Γ(γnl1,l2,l3 , cl1,l2,l3).

For the average claim amount Xl1,l2,l3 in risk class (l1, l2, l3) we have

Xl1,l2,l3 = Yl1,l2,l3
nl1,l2,l3

∼ Γ(γnl1,l2,l3 , cl1,l2,l3nl1,l2,l3).

We model
g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·), which leads to a
multiplicative structure. In order to get a unique solution, we set β1,1 = β2,1 = β3,1 = 0.
Moreover, we define

β = (β0, β1,2, . . . , β1,6, β2,2, . . . , β2,11, β3,2)′ ∈ Rr+1,

where r = 16. Similarly as in Exercises 10.1 and 11.1, we relabel the risk classes with the
index m ∈ {1, . . . ,M}, where M = 6 · 11 · 2 = 132, define X = (X1, . . . , XM )′ and the design
matrix Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . ,M}. According to
Section 7.4.4 of the lecture notes (version of February 7, 2022), Xm belongs to the exponential
dispersion family with cumulant function b(θ) = − log(−θ) for θ < 0, θm = −cm/γ, wm = nm
and dispersion parameter φ = 1/γ, i.e. we have

[Zβ]m = logE[Xm] = log γnm
cmnm

= log γ

cm
= log

(
− 1
θm

)
,

where [Zβ]m denotes the m-th element of the vector Zβ. Summarizing, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF (θm = − exp{−[Zβ]m}, φ = 1/γ,wm = nm, b(θ) = − log(−θ)) ,

for all m ∈ {1, . . . ,M}. As b(θ) = − log(−θ), we have b′(·) = −1/θ, where b′ denotes the
first derivative of b. In particular, the log-link function g(·) = log(·) is not equal to the
canonical link function h(µ) = (b′)−1(µ) = −1/µ in the gamma model. Therefore, we cannot
use equation (7.35) of the lecture notes (version of February 7, 2022) in order to determine
the MLE β̂

MLE
of β. However, according to Proposition 7.12 of the lecture notes (version of

February 7, 2022), the MLE β̂
MLE

of β is the solution of

Z ′Vθ exp{Zβ} != Z ′VθX, (3)

where the weight matrix Vθ is given by Vθ = diag(−θ1n1, . . . ,−θMnM ). Note that assuming
a constant scale parameter γ for all risk cells m = 1, . . .M , the dispersion parameter φ = 1/γ
cancels from the weight matrix defined on page 205 of the lecture notes (version of February 7,
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2022). Equation (3) has to be solved numerically. We refer to Listing 7 for the R code used in
this exercise. The resulting MLEs of the parameters β0, β2,3, β2,7, β3,2 that are (statistically)
significantly different from 0 (on a 10% level) are given in the first row of Table 3. We observe
that we expect higher claim sizes in regions B11 and B2, compared to the reference region B1.
Moreover, claim sizes tend to be higher if a car with regular fuel is involved compared to a
diesel car. We remark that the parameters corresponding to the individual categorical levels
of the covariate area code are not (statistically) significantly different from 0 (on a 10% level).
However, this does not mean that the covariate area code itself is not statistically significant,
see part (b).

β̂0 β̂2,3 β̂2,7 β̂3,2
MLE 7.6116 0.5288 0.1991 0.1846
p-value ≈ 0 0.0585 0.0898 0.0321

Table 3: MLEs of the statistically significant parameters and corresponding p-values.

(b) The estimates of the expected values of Xm are given by

µ̂m = b′(θ̂m) = −θ̂−1
m = exp

{[
Zβ̂

MLE]
m

}
,

for all m = 1, . . . ,M , and we write µ̂ = (µ̂1, . . . , µ̂M )′. According to page 207 of the lecture
notes (version of February 7, 2022), the deviance statistics is given by

D(X, µ̂) = 2
M∑
m=1

wm(Xmh(Xm)− b[h(Xm)]−Xmh(µ̂m) + b[h(µ̂m)])

= 2
M∑
m=1

nm(−1− logXm +Xm/µ̂m + log µ̂m).

Estimating φ by
φ̂D = D(X, µ̂)

M − r − 1 ,

see page 208 of the lecture notes (version of February 7, 2022), we have for the scaled deviance
statistics

D∗(X, µ̂) = 2(`X(X)− `X(µ̂)) = 2
φ̂D

M∑
m=1

nm(−1− logXm +Xm/µ̂m + log µ̂m).

We define the null hypothesis

H0 : β1,2 = · · · = β1,6 = 0.

Thus, in the reduced model we set the above p = 5 variables equal to 0. Then, we can
recalculate β̂

MLE
H0

for this reduced model and define

µ̂H0 = exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.40) of the
lecture notes (version of February 7, 2022), the test statistic

X2 = D∗(X, µ̂H0)−D∗(X, µ̂).
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has approximately a χ2-distribution with df = p = 5 degrees of freedom. We get

X2 ≈ 14.917,

which corresponds to a p-value of approximately 1.07%. Thus, using the χ2-test we can reject
H0 at significance level of 5%. We can conclude that there seems to be no statistical evidence
that the area code could be omitted as tariff criterion, even though the individual categorical
levels of the covariate area code are not (statistically) significantly different from 0 (on a 10%
level), see part (a).

Listing 7: R code for Exercise 11.3.
1 ### Apply GLM
2 d.glm <- glm( ClaimAmount ~ Area+ VehBrand +VehGas , data=data , weights =ClaimNb ,
3 family = Gamma (link =" log "))
4 summary (d.glm)
5
6 ### Calculate the deviance statistics of the full model
7 D.full <- d. glm$deviance
8
9 ### Fit the reduced model and calculate the deviance statistics

10 d.glm .2 <- glm( ClaimAmount ~ VehGas +VehBrand , data=data , weights =ClaimNb ,
11 family = Gamma (link =" log "))
12 D. reduced <- d.glm .2 $deviance
13
14 ### Calculate the test statistic X^2 and the corresponding p- value
15 phi.est <- d. glm$deviance /d. glm$df . residual
16 round ((X.2 <- D. reduced /phi.est -D.full/phi.est ) ,3)
17 pchisq (X.2, 5, lower .tail= FALSE )

Solution 11.4 Neural Networks and Gradient Descent

(a) We model the regression function α : Z → R+ with a a single hidden layer neural network
with r1 ∈ N hidden neurons. Our feature space is Z ⊂ Rr0+1 with r0 = 1, i.e. we have input
dimension r0 = 1. We assume that the first component of the covariates z = (1, z) ∈ Z is
equal to 1 for modeling an intercept. We define the parameter vectors

β
(1)
j =

(
β

(1)
j,0 , β

(1)
j,1

)
∈ Rr0+1,

for all j = 1, . . . , r1, and

β(2) =
(
β

(2)
0 , β

(2)
1 , . . . , β(2)

r1

)
∈ Rr1+1.

The hyperbolic tangent activation function is given by

ψ(x) = tanh(x) = e2x − 1
e2x + 1 , for x ∈ R.

For covariates z = (1, z) ∈ Z, the activations in the hidden layer are then given by

q(1)(z) =
(

1, q(1)
1 (z), . . . , q(1)

r1
(z)
)
,

where
q

(1)
j (z) = ψ

(
〈β(1)

j , z〉
)

= ψ
(
β

(1)
j,0 + β

(1)
j,1 z

)
,

for all j = 1, . . . , r1. Since the codomain of α(·) has to be R+, we define a log-linear regression
approach as follows

α(z) = αβ(z) = exp
{
〈β(2), q(1)(z)〉

}
= exp

β(2)
0 +

r1∑
j=1

β
(2)
j q

(1)
j (z)

 ,
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with resulting network parameter

β =
(
β

(1)
1 , . . . ,β(1)

r1
,β(2)

)
∈ R%

having dimension % = (r0 + 1)r1 + r1 + 1 = (1 + 1)r1 + r1 + 1 = 3r1 + 1.

(b) As we assume independent Pareto distributions with threshold θ > 0 and covariate-dependent
tail index α(zm) > 0 for the data Y = (Y1, . . . , YM ) with corresponding covariates z1, . . . ,zM ,
the joint log-likelihood function `Y (β) is given by

`Y (β) = log
M∏
m=1

αβ(zm)
θ

(
Ym
θ

)−αβ(zm)−1

=
M∑
m=1

logαβ(zm)− log θ − [αβ(zm) + 1] log Ym
θ
.

In the saturated model we assume one parameter αm per observation m. This parameter αm
is determined by maximizing the individual MLE for observation m, i.e. we have to maximize

g(αm) def= log(αm)− log θ − (αm + 1) log Ym
θ

with respect to αm, for all m = 1, . . . ,M . If we take the derivative with respect to αm, we get

∂g(αm)
∂αm

= 1
αm
− log Ym

θ
,

for all m = 1, . . . ,M . This is equal to 0 if and only if

αm = 1
log Ym

θ

, (4)

for all m = 1, . . . ,M . For the second derivative of g(αm) with respect to αm we get

∂2g(αm)
∂α2

m

= − 1
α2
m

< 0,

for all m = 1, . . . ,M . That is, in the saturated model we have parameter α = (α1, . . . , αM )
with αm given as in (4), for all m = 1, . . . ,M . For the log-likelihood of the saturated model
we then have

`Y (Y ) =
M∑
m=1

log 1
log Ym

θ

− log θ −
(

1
log Ym

θ

+ 1
)

log Ym
θ

=
M∑
m=1
− log log Ym

θ
− log θ − 1− log Ym

θ
.

Finally, the (scaled) deviance statistics is given by

LY (β) = 2(`Y (Y )− `Y (β)) = 2
M∑
m=1
− log log Ym

θ
− 1− logαβ(zm) + αβ(zm) log Ym

θ
.

(c) A neural network model with a large number of hidden neurons is heavily over-parametrized.
Therefore, a maximum likelihood estimator would lead to overfitting of the model to the data
(in-sample). Thus, we are only interested in finding a sufficiently good approximation which
has also a good out-of-sample performance. We believe that such a ‘good’ parametrization
can be reached for example by the gradient descent method.
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(d) For the derivative of the hyperbolic tangent activation function ψ we have

∂ψ(x)
∂x

= ∂

∂x

e2x − 1
e2x + 1 = 2e2x(e2x + 1)− 2e2x(e2x − 1)

(e2x + 1)2 = 4e2x

(e2x + 1)2

= (e2x + 1)2 − (e2x − 1)2

(e2x + 1)2 = 1− ψ2(x).

In the gradient descent optimization algorithm the goal is to decrease a given loss function by
iteratively updating the model parameters. In our case we would like to decrease the (scaled)
deviance statistics LY (β) derived in part (b) above. To this end, for a given β, we move in
the direction of the maximal local decrease of the deviance statistics, i.e. in the direction of
the negative gradient ∇βLY (β) of the deviance statistics. We calculate

∇βLY (β) = ∂LY (β)
∂β

= 2
M∑
m=1

[
− 1
αθ(zm) + log Ym

θ

]
∂αβ(zm)

∂β
,

where we have

∂αβ(zm)
∂β

(1)
j,0

= αθ(zm)β(2)
j

(
1−

[
q

(1)
j (z)

]2
)
,

∂αβ(zm)
∂β

(1)
j,1

= αθ(zm)β(2)
j

(
1−

[
q

(1)
j (z)

]2
)
zm,

∂αβ(zm)
∂β

(2)
0

= αβ(z),

∂αβ(zm)
∂β

(2)
j

= αβ(z)q(1)
j (z),

for all m = 1, . . . ,M and j = 1, . . . , r1. In one single step of the gradient descent optimization
algorithm we have the update

β −→ β − ρ∇βLY (β),

where ρ > 0 is the so-called learning rate. Note that one should carefully choose an appropriate
stopping time of the algorithm in order to prevent from overfitting; and one should also
carefully choose ρ > 0 because the gradient descent steps lead to a decrease locally.
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