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Solution 3.1 No-Claims Bonus

(a) We define the following events:

A = {“no claims in the last six years”},
B = {“no claims in the last three years but at least one claim in the last six years”},
C = {“at least one claim in the last three years”}.

Note that since the events A, B and C are disjoint and cover all possible outcomes, we have

P[A] + P[B] + P[C] = 1,

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of P[B]
is slightly more involved, we will look at P[A] and P[C]. Let N1, . . . , N6 be the number of
claims of the last six years of our considered car driver, where N6 corresponds to the most
recent year. By assumption, N1, . . . , N6 are i.id. Poisson random variables with frequency
parameter λ = 0.2. Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] =
6∏
i=1

P [Ni = 0] =
6∏
i=1

exp{−λ} = exp{−6λ} = exp{−1.2}

and, similarly,

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− exp{−3λ} = 1− exp{−0.6}.

For the event B we get

P[B] = 1− P[A]− P[C] = 1− exp{−1.2} − (1− exp{−0.6}) = exp{−0.6} − exp{−1.2}.

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = E[0.8 · 1A + 0.9 · 1B + 1 · 1C ] = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]
= 0.8 · exp{−1.2}+ 0.9 · (exp{−0.6} − exp{−1.2}) + 1− exp{−0.6}
≈ 0.915.

If s denotes the surcharge on the premium, then it has to satisfy the equation

q (1 + s) · premium = premium,

which leads to
s = 1

q
− 1.

We conclude that the surcharge on the premium is given by approximately 9.3%.
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(b) We use the same notation as in (a). Since this time the calculation of P[B] is considerably more
involved, we again look at P[A] and P[C]. By assumption, conditionally given Θ, N1, . . . , N6
are i.i.d. Poisson random variables with frequency parameter Θλ, where λ = 0.2. Therefore,
we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] = E [P [N1 = 0, . . . , N6 = 0|Θ]] = E

[ 6∏
i=1

P [Ni = 0|Θ]
]

= E

[ 6∏
i=1

exp{−Θλ}
]

= E [exp{−6Θλ}] = MΘ(−6λ),

where MΘ denotes the moment generating function of Θ. Since Θ has an exponential
distribution with parameter c = 1, MΘ is given by

MΘ(r) = 1
1− r ,

for all r < 1, see Exercise 1.2, which leads to

P[A] = 1
1 + 6λ = 1

2.2 .

Similarly, we get

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− 1
1 + 3λ = 1− 1

1.6 = 0.6
1.6 .

For the event B we get

P[B] = 1− P[A]− P[C] = 1− 1
2.2 −

0.6
1.6 = 1

1.6 −
1

2.2 .

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C] = 0.8 · 1
2.2 + 0.9 ·

(
1

1.6 −
1

2.2

)
+ 0.6

1.6 ≈ 0.892.

We conclude that the surcharge s on the premium is given by

s = 1
q
− 1 ≈ 12.1%,

which is considerably bigger than in (a). The reason is that in (b) we introduce dependence
between the claim counts of the individual years of the considered car driver. This increases
the probability of having no claims in the last six years, and decreases the expected proportion
q of the premium that is still paid after the grant of the no-claims bonus.

Solution 3.2 Compound Poisson Distribution

(a) Since S ∼ CompPoi(λv,G), we can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . .
are independent. Now we can define Ssc, Smc and Slc as

Ssc =
N∑
i=1

Yi1{Yi≤1’000}, Smc =
N∑
i=1

Yi1{1’000<Yi≤1’000’000} and Slc =
N∑
i=1

Yi1{Yi>1’000’000}.
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(b) Note that according to Table 2 given on the exercise sheet, we have

P[Y1 ≤ 1’000] = P[Y1 = 100] + P[Y1 = 300] + P[Y1 = 500] = 3
20 + 4

20 + 3
20 = 1

2 ,

P[1’000 < Y1 ≤ 1’000’000] = P[Y1 = 6’000] + P[Y1 = 100’000] + P[Y1 = 500’000]

= 2
15 + 2

15 + 1
15 = 1

3 and

P[Y1 > 1’000’000] = 1− P[Y1 ≤ 1’000’000] = 1− 1
2 −

1
3 = 1

6 .

Thus, using Theorem 2.14 (disjoint decomposition of compound Poisson distributions) of the
lecture notes (version of March 20, 2019), we get

Ssc ∼ CompPoi
(
λv

2 , Gsc

)
, Smc ∼ CompPoi

(
λv

3 , Gmc

)
and Slc ∼ CompPoi

(
λv

6 , Glc

)
,

where

Gsc(y) = P[Y1 ≤ y|Y1 ≤ 1’000],
Gmc(y) = P[Y1 ≤ y|1’000 < Y1 ≤ 1’000’000] and
Glc(y) = P[Y1 ≤ y|Y1 > 1’000’000],

for y ∈ R. In particular, for a random variable Ysc having distribution function Gsc, we have

P[Ysc = 100] = P[Y1 = 100]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 ,

P[Ysc = 300] = P[Y1 = 300]
P[Y1 ≤ 1’000] = 4/20

1/2 = 4
10 and

P[Ysc = 500] = P[Y1 = 500]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 .

Analogously, for random variables Ymc and Ylc having distribution functions Gmc and Glc,
respectively, we get

P[Ymc = 6’000] = 2
5 , P[Ymc = 100’000] = 2

5 and P[Ymc = 500’000] = 1
5 ,

as well as

P[Ylc = 2’000’000] = 1
2 , P[Ylc = 5’000’000] = 1

4 and P[Ylc = 10’000’000] = 1
4 .

(c) According to Theorem 2.14 of the lecture notes (version of March 20, 2019), Ssc, Smc and Slc
are independent.

(d) In order to find E[Ssc], we need E[Ysc], which can be calculated as

E[Ysc] = 100 ·P[Ysc = 100]+300 ·P[Ysc = 300]+500 ·P[Ysc = 500] = 300
10 + 1200

10 + 1500
10 = 300.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

E[Ssc] = λv

2 E[Ysc] = 0.3 · 300 = 90.

Similarly, we get
E[Ymc] = 142’400 and E[Ylc] = 4’750’000.
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Thus, we find

E[Smc] = λv

3 E[Ymc] = 28’480 and E[Slc] = λv

6 E[Ylc] = 475’000.

Since S = Ssc + Smc + Slc, we get

E[S] = E[Ssc] + E[Smc] + E[Slc] = 503’570.

In order to find Var(Ssc), we need E[Y 2
sc], which can be calculated as

E[Y 2
sc] = 1002 · P[Ysc = 100] + 3002 · P[Ysc = 300] + 5002 · P[Ysc = 500]

= 30’000
10 + 360’000

10 + 750’000
10 = 114’000.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

Var(Ssc) = λv

2 E[Y 2
sc] = 0.3 · 114’000 = 34’200.

Similarly, we get

E[Y 2
mc] = 54’014’400’000 and E[Y 2

lc ] = 33’250’000’000’000.

Thus, we find

Var(Smc) = λv

3 E[Y 2
mc] = 10’802’880’000 and Var(Slc) = λv

6 E[Y 2
lc ] = 3’325’000’000’000.

Since S = Ssc + Smc + Slc, and Ssc, Smc and Slc are independent, we get√
Var(S) =

√
Var(Ssc) + Var(Smc) + Var(Slc) =

√
3’335’802’914’200 ≈ 1’826’418.

(e) First, we define the random variable Nlc as

Nlc ∼ Poi
(
λv

6

)
.

The probability that the total claim in the large claims layer exceeds 5 million can be calculated
by looking at the complement, i.e. at the probability that the total claim in the large claims
layer does not exceed 5 million. Since the smallest claim size for a claim in the large claims
layer is given by 2’000’000, with three claims in the large claims layer we already exceed 5
million with probability one. Thus, it is enough to consider only up to two claims. We get

P [Slc ≤ 5’000’000]
= P[Nlc = 0] + P[Nlc = 1]P[Ylc ≤ 5’000’000] + P[Nlc = 2]P[Ylc = 2’000’000]2

= exp
{
−λv6

}
+ exp

{
−λv6

}
λv

6

(
1
2 + 1

4

)
+ exp

{
−λv6

}(
λv

6

)2 1
2

(
1
2

)2

= exp {−0.1} (1 + 0.075 + 0.00125)
≈ 97.4%.

We can conclude that

P [Slc > 5’000’000] = 1− P [Slc ≤ 5’000’000] ≈ 2.6%.
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Solution 3.3 Compound Distribution

We show that the moment generating function MS of S is equal to the moment generating function
of an exponential distribution with parameter λp. According to Proposition 2.2 of the lecture notes
(version of March 20, 2019), MS is given by (wherever it exists)

MS(r) = MN [logMY1(r)],

where MN and MY1 are the moment generating functions of N and Y1, respectively. As S ≥ 0
almost surely, MS(r) exists at least for all r < 0. In Exercises 1.1 and 1.2 we have seen that

MN (r) = p exp{r}
1− (1− p) exp{r} ,

for all r < − log(1− p), and that

logMY1(r) = log
(

λ

λ− r

)
,

for all r < λ. Thus, we get

MS(r) = MN

[
log
(

λ

λ− r

)]
=

p exp
{

log
(

λ
λ−r

)}
1− (1− p) exp

{
log
(

λ
λ−r

)} = λp

λ− r − λ(1− p) = λp

λp− r
.

With Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that S has indeed
an exponential distribution with parameter λp. We remark that for this compound model the
corresponding distribution function can be given in closed form. However, usually this is not
possible. Therefore, we will consider other methods for the calculation of the distribution function
of S in Chapter 4 of the lecture notes (version of March 20, 2019).

Solution 3.4 Compound Binomial Distribution

(a) Let S̃ ∼ CompBinom(ṽ, p̃, G̃) with the random variable Ỹ1 having distribution function G̃
and moment generating function MỸ1

. Then, by Proposition 2.6 of the lecture notes (version
of March 20, 2019), the moment generating function MS̃ of S̃ is given by

MS̃(r) =
(
p̃MỸ1

(r) + 1− p̃
)ṽ
,

for all r ∈ R for which MỸ1
is defined. We calculate the moment generating function MSlc of

Slc and show that it is exactly of the form given above. Let r ∈ R such that MSlc(r) exists.
Note that since Slc ≥ 0 almost surely, its moment generating function is defined at least for
all r < 0. We have

MSlc(r) = E [exp {rSlc}] = E

[
exp

{
r

N∑
i=1

Yi 1{Yi>M}

}]
= E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}]

= E

[
E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}∣∣∣∣∣N
]]

= E

[
N∏
i=1

E
[
exp

{
rYi 1{Yi>M}

}]]
,

where in the fourth equality we used the tower property of conditional expectation and in the
fifth equality the independence between N and Yi. For the inner expectation we get

E
[
exp

{
rYi 1{Yi>M}

}]
= E

[
exp {rYi} · 1{Yi>M} + 1{Yi≤M}

]
= E [exp {rYi} |Yi > M ]P[Yi > M ] + P[Yi ≤M ]
= E [exp {rYi} |Yi > M ] [1−G(M)] +G(M).
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Note that the distribution function of the random variable Yi|Yi > M is Glc. Thus, we can
write

E
[
exp

{
rYi 1{Yi>M}

}]
= MY1|Y1>M (r)[1−G(M)] +G(M).

Hence, we get

MSlc(r) = E

[
N∏
i=1

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)]
= E

[(
MY1|Y1>M (r)[1−G(M)] +G(M)

)N]
= E

[
exp

{
N log

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)}]
= MN (ρ),

where MN is the moment generating function of N and

ρ = log
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
.

Since we have N ∼ Binom(v, p), MN (r) is given by

MN (r) = (p exp{r}+ 1− p)v.

Therefore, we get

MSlc(r) = [p
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
+ 1− p]v

= (p[1−G(M)]MY1|Y1>M (r) + 1− p[1−G(M)])v.

Applying Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that
Slc ∼ CompBinom(ṽ, p̃, G̃) with ṽ = v, p̃ = p[1−G(M)] and G̃ = Glc.

(b) In (a) we showed that the number of claims of the compound distribution Slc has a binomial
distribution with parameters v and p[1 − G(M)] > 0. In particular, there is a positive
probability that we have v claims with Yi > M . Now suppose that Ssc > 0. Then, we know
that there is an i ∈ {1, . . . , N} with Yi ≤M . In particular, this claim cannot be part of Slc
and there is zero probability that we have v claims with Yi > M . This explains why Ssc
and Slc cannot be independent. However, note that with the Poisson distribution as claims
count distribution such a split in small and large claims leads to independent compound
distributions, see Theorem 2.14 of the lecture notes (version of March 20, 2019).

Updated: October 4, 2022 6 / 6


