Sheet 2

Exercise 1

Let $\mathcal{L} = \{(E, 2)\}$ be the language of graphs containing a single binary relation E. Prove that there is no \mathcal{L} -theory T whose models are exactly the trees.

Exercise 2

Let \mathcal{L} be a language and T an \mathcal{L} -theory. Let $\varphi(x, y)$ be a formula with two variables. Assume that for every model M of T and every $b \in M$, the set

$$\varphi(M,b) = \{a \in M \mid M \models \varphi(a,b)\}$$

is finite.

Prove that there is an integer $C \ge 0$ such that all the sets $\varphi(M, b)$ have cardinality at most C, as M ranges over models of T and b ranges over M.

Hint: assume this is false, and then expand the language with infinitely many new constant symbols (c_i) , and an additional constant t, and expand the theory in a suitable way, so that after showing that it is finitely-satisfiable, a contradiction follows.

Exercise 3

- 1. Let E be a finite field and let \overline{E} be an algebraic closure of E. Let $n \ge 1$ be an integer and let f_1, \ldots, f_n be polynomials in $\overline{E}[X_1, \ldots, X_n]$. Assume that the map $x = (x_i) \mapsto (f_j(x))$ is injective. Prove that this map is also surjective.
- 2. Give an example to show that "injective" and "surjective" cannot be switched.
- 3. Show that an ultrafilter is principal if and only if it contains a finite set.
- 4. Let C be a non-principal ultraproduct of fields E_p which are algebraic closures of \mathbb{F}_p as p ranges over all prime numbers. Show that C is an algebraically-closed field of characteristic 0.
- 5. Show that the cardinality of C is bounded by that of \mathbb{C} .
- 6. Show that there exists a family $(f_t)_{t\in\mathbb{R}}$ of maps $f_t\colon\mathbb{N}\to\mathbb{Q}$ such that, for all $t\neq s\in\mathbb{R}$, the set

$$\{n \ge 0 \mid f_t(n) = f_s(n)\}$$

is finite

Hint: consider for each t a sequence of rational numbers converging to t.

7. Deduce the existence of a family of maps g_t from the set of primes to the disjoint union of all E_p such that $g_t(p) \in E_p$ for all primes p and for all $t \neq s \in \mathbb{R}$, the set

$$\{p \ge 0 \mid g_t(p) = g_s(p)\}$$

is finite.

- 8. Deduce that the cardinality of C is equal to that of \mathbb{C} , and conclude that C is isomorphic to \mathbb{C} as a field. (Use the fact that algebraically closed fields of characteristic 0 are isomorphic if and only if they have the same cardinality.)
- 9. Let g_1, \ldots, g_n be elements of $\mathbb{C}[X_1, \ldots, X_n]$. If the map $z = (z_i) \mapsto (g_j(z))$ is injective from \mathbb{C}^n to itself, then it is surjective.