Sheet 3

Exercise 1

Let $\mathcal{L} = (+, -, \cdot, 0, 1)$ be the language of rings, and let T be the \mathcal{L} -theory of finite fields, namely, the theory whose sentences are those \mathcal{L} -sentences ϕ such that $E \models \phi$ for all finite fields E.

- (a) Show that T has models of characteristic 0, and infinite models of characteristic p for any prime number p.
- (b) Show that any model of T is a perfect field (i.e., it is either of characteristic 0, or the Frobenius morphism $x \mapsto x^p$ is surjective).
- (c) Let K be a field. Show that for every integer $n \ge 1$, there exists a formula $\phi_n(v_0, \ldots, v_{n-1})$ such that that $K \models \phi_n(a_0, \ldots, a_{n-1})$ if and only if the polynomial

$$X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

is irreducible.

- (d) Show that if K is a model of T, then K is not algebraically closed, and in fact admits for any $n \ge 1$ at least one extension of degree n in an algebraic closure \bar{K} of K.
- (e) Show that there exist formulas $\pi_n(v, a, b, c)$ (resp. $\mu_n(v, a, b, c)$), where for $I = \{0, 1, \ldots, n-1\}, v = (v_i)_{i \in I}, a = (a_i)_{i \in I}, b = (b_i)_{i \in I}$ and $c = (c_i)_{i \in I}$ are variables, such that if K is a model of T and v, a, b, $c \in K^n$, then $K \models \pi_n(v, a, b, c)$ if and only if

$$\sum_{i=0}^{n-1} a_i \alpha^i + \sum_{i=0}^{n-1} b_i \alpha^i = \sum_{i=0}^{n-1} c_i \alpha^i,$$

resp. $K \models \mu_n(v, a, b, c)$ if and only if

$$\left(\sum_{i=0}^{n-1} a_i \alpha^i\right) \cdot \left(\sum_{i=0}^{n-1} b_i \alpha^i\right) = \sum_{i=0}^{n-1} c_i \alpha^i,$$

where α is the class of X in the ring

$$K[X]/(v_0 + v_1X + \dots + v_{n-1}X^{n-1} + X^n).$$

Hint: multiplication by α can be expressed as a matrix acting on the vectorspace $K_n[X]$.

(f) Show that there is a \mathcal{L} -formula $\theta_n(w, v, a, b)$ expressing that $f(a) = b \in K[X]/g(X)$, where

$$f(X) = \sum_{i=0}^{n} v_i X^i, \quad g(X) = \sum_{i=0}^{n} w_i X^i$$

are two monic polynomials of degree n.

- (g) Let K be a model of T and $f \in K[X]$ a monic degree n polynomial. Show that if f is irreducible, then any root of f generates its splitting field K[X]/f(X). (This statement holds for finite fields.)
- (h) Deduce that if K is a model of T and \overline{K} is an algebraic closure of K, then for any integer $n \ge 1$, the field K has a unique extension of degree n in \overline{K} . (This statement holds for finite fields.)

Hint: using the previous questions, show how to express, using the language of rings, the fact that if we have two irreducible polynomials f and g of degree n, then the roots of f are in the field generated by the roots of g.

Exercise 2

- (a) Following the methods seen in class for real-closed fields, prove that the theory ACF of algebraically closed fields has q.e. in the language of rings.
- (b) Show that if $F_1 \subset F_2$ are algebraically closed, then $F_2 \equiv F_1$ (i.e., they are elementarily equivalent).
- (c) Let p be a prime number or zero, and ACF_p the theory of algebraically closed fields of characteristic p. Show that the theory ACF_p is complete (i.e., for any sentence ϕ in the language of rings, either $ACF_p \models \phi$ or $ACF_p \models \neg \phi$).
- (d) Let F be an algebraically closed field. Show that definable subsets of F are either finite or have finite complement.
- (e) Let F be an algebraically closed field, $m \ge 0$ an integer and $P \subset F[X_1, \ldots, X_m]$ a prime ideal. Show that there exists $(x_1, \ldots, x_m) \in F^m$ such that f(x) = 0for all $f \in P$. This is known as Hilbert's Nullstellensatz.

Hint: use Hilbert's Basis-Satz to reduce to finitely many equations to be able to find an x with this property in some algebraically closed extension of F.

- (f) Let ϕ be a sentence in the language of rings. Show that the following properties are equivalent:
 - (a) $ACF_0 \models \phi$
 - (b) $ACF_p \models \phi$ for all primes p large enough (depending on ϕ)
 - (c) $ACF_p \models \phi$ for all primes p in an infinite set (depending on ϕ)

Hint: Use compactness and completeness.

(g) Deduce from the previous question another solution of Question 9 of Exercise 3 of Sheet 2: every injective map $\mathbb{C}^n \to \mathbb{C}^n$ given by polynomials is surjective.