Sheet 4

Exercise 1

Let $M = X^2Y^2(X^2 + Y^2 - 3) + 1 \in \mathbb{R}[X, Y]$. We saw in class, that every non-negative polynomial is a sum of squares of rational functions (Hilbert's 17th problem). In this exercise, we will see that M is a non-negative polynomial that is not a sum of squares of polynomials.

(a) Show that $M(x, y) \ge 0$ for all $(x, y) \in \mathbb{R}^2$.

Hint: Use the arithmetic-geometric mean inequality on three variables.

(b) Show that if $m \ge 1$ and (f_1, \ldots, f_m) are non-zero elements of $\mathbb{R}[X, Y]$, then

 $\deg(f_1^2 + \dots + f_m^2) = 2\max(\deg(f_i)).$

(c) Show that there is no finite family (p_i)_{i∈I} in ℝ[X, Y] such that M = ∑ p_i². Hint: Assume that there is such a family; show first that deg(p_i) ≤ 3, then evaluate with X = 0 and Y = 0 to see that each p_i would have to be of the form a + bXY for some a ∈ ℝ and some b ∈ ℝ[X, Y] with degree at most 1; compute then the coefficient of (XY)².

Exercise 2

Let \mathcal{L} be a language with a binary relation symbol \leq .

- (a) Let M be an o-minimal \mathcal{L} -structure. Show that a non-empty subset $X \subset M$ with $X \neq M$ is definable if and only if the boundary $\partial X = \overline{X} \setminus \mathring{X}$ of X is finite and non-empty.
- (b) Let M be an \mathcal{L} -structure in which \leq is interpreted as a total order which is dense without endpoints. Show that M is o-minimal if and only if every definable non-empty subset $X \subset M$ with $X \neq M$ has finite non-empty boundary $\partial X = \overline{X} \setminus X$, and for any x < y in $\partial X \cup \{-\infty, +\infty\}$, if $]x, y[\cap \partial X$ is empty, then either $]x, y[\subset X \text{ or }]x, y[\cap X = \emptyset$.

Exercise 3

Let $\mathcal{L}_0 = (\cdot, e, \leq)$ be the language of ordered groups. Let M be an o-minimal \mathcal{L}_0 -structure which is a model of the theory of ordered groups. (Which means that the order has the property that $x \leq y$ implies $xz \leq yz$ and $zx \leq zy$ for all $z \in M$.)

(a) Let $H \subset M$ be a definable subgroup of (M, \cdot) . Show that H is an interval, i.e., if e < h for some $h \in H$, then $[e, h] \subset H$.

Hint: By contradiction, show that if this is false, then there is an infinite "discrete" definable set.

- (b) Show that the only definable subgroups of (M, \cdot) are $\{e\}$ and M.
- (c) Deduce that (M, \cdot) is abelian and divisible, i.e. that for any $y \in M$ and $n \ge 1$ integer, there exists $x \in M$ such that $x^n = y$.

Exercise 4

Let $\mathcal{L} = (+, -, \cdot, 0, 1, \leq)$ be the language of ordered rings. Let M be an o-minimal \mathcal{L} -structure which is a model of the theory of ordered rings (not necessarily commutative; this means that 0 < 1 in M, that (M, +) is an ordered abelian group, and that the order has the property that whenever $x \leq y$ and $z \geq 0$, also $xz \leq yz$). *Hint: Use exercise 3.*

- (a) Show that for every $x \in M \setminus \{0\}$, there is an inverse element $y \in M$ with xy = 1.
- (b) Show that the positive elements of M form an ordered group with the multiplication.
- (c) Show that M is an ordered field.
- (d) Show that positive elements in M have a square root.
- (e) Show that addition and multiplication are continuous on M^2 (with the order topology on M and the product of the order topology on M^2).
- (f) Show that for $f \in M[X]$, the polynomial function associated to f from M to M is a definable continuous function.
- (g) Show that M is a real-closed field. Hint: Use the criterion that a field F is real closed if and only if (1) for every $a \in F$, either a or -a is a square and (2) every polynomial in F[X] of odd degree has a root in F.