Sheet 4

Exercise 1

Let $M=X^{2} Y^{2}\left(X^{2}+Y^{2}-3\right)+1 \in \mathbb{R}[X, Y]$. We saw in class, that every nonnegative polynomial is a sum of squares of rational functions (Hilbert's 17th problem). In this exercise, we will see that M is a non-negative polynomial that is not a sum of squares of polynomials.
(a) Show that $M(x, y) \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$.

Hint: Use the arithmetic-geometric mean inequality on three variables.
(b) Show that if $m \geq 1$ and $\left(f_{1}, \ldots, f_{m}\right)$ are non-zero elements of $\mathbb{R}[X, Y]$, then

$$
\operatorname{deg}\left(f_{1}^{2}+\cdots+f_{m}^{2}\right)=2 \max \left(\operatorname{deg}\left(f_{i}\right)\right)
$$

(c) Show that there is no finite family $\left(p_{i}\right)_{i \in I}$ in $\mathbb{R}[X, Y]$ such that $M=\sum p_{i}^{2}$. Hint: Assume that there is such a family; show first that $\operatorname{deg}\left(p_{i}\right) \leq 3$, then evaluate with $X=0$ and $Y=0$ to see that each p_{i} would have to be of the form $a+b X Y$ for some $a \in \mathbb{R}$ and some $b \in \mathbb{R}[X, Y]$ with degree at most 1 ; compute then the coefficient of $(X Y)^{2}$.

Exercise 2

Let \mathcal{L} be a language with a binary relation symbol \leq.
(a) Let M be an o-minimal \mathcal{L}-structure. Show that a non-empty subset $X \subset$ M with $X \neq M$ is definable if and only if the boundary $\partial X=\bar{X} \backslash X$ of X is finite and non-empty.
(b) Let M be an \mathcal{L}-structure in which \leq is interpreted as a total order which is dense without endpoints. Show that M is o-minimal if and only if every definable non-empty subset $X \subset M$ with $X \neq M$ has finite non-empty boundary $\partial X=\bar{X} \backslash \dot{X}$, and for any $x<y$ in $\partial X \cup\{-\infty,+\infty\}$, if $] x, y[\cap \partial X$ is empty, then either $] x, y[\subset X$ or $] x, y[\cap X=\emptyset$.

Exercise 3

Let $\mathcal{L}_{0}=(\cdot, e, \leq)$ be the language of ordered groups. Let M be an o-minimal \mathcal{L}_{0}-structure which is a model of the theory of ordered groups. (Which means that the order has the property that $x \leq y$ implies $x z \leq y z$ and $z x \leq z y$ for all $z \in M$.)
(a) Let $H \subset M$ be a definable subgroup of (M, \cdot). Show that H is an interval, i.e., if $e<h$ for some $h \in H$, then $[e, h] \subset H$.

Hint: By contradiction, show that if this is false, then there is an infinite "discrete" definable set.
(b) Show that the only definable subgroups of (M, \cdot) are $\{e\}$ and M.
(c) Deduce that (M, \cdot) is abelian and divisible, i.e. that for any $y \in M$ and $n \geq$ 1 integer, there exists $x \in M$ such that $x^{n}=y$.

Exercise 4

Let $\mathcal{L}=(+,-, \cdot, 0,1, \leq)$ be the language of ordered rings. Let M be an o-minimal \mathcal{L}-structure which is a model of the theory of ordered rings (not necessarily commutative; this means that $0<1$ in M, that $(M,+)$ is an ordered abelian group, and that the order has the property that whenever $x \leq y$ and $z \geq 0$, also $x z \leq y z)$. Hint: Use exercise 3 .
(a) Show that for every $x \in M \backslash\{0\}$, there is an inverse element $y \in M$ with $x y=1$.
(b) Show that the positive elements of M form an ordered group with the multiplication.
(c) Show that M is an ordered field.
(d) Show that positive elements in M have a square root.
(e) Show that addition and multiplication are continuous on M^{2} (with the order topology on M and the product of the order topology on M^{2}).
(f) Show that for $f \in M[X]$, the polynomial function associated to f from M to M is a definable continuous function.
(g) Show that M is a real-closed field. Hint: Use the criterion that a field F is real closed if and only if (1) for every $a \in F$, either a or $-a$ is a square and (2) every polynomial in $F[X]$ of odd degree has a root in F.

