Sheet 6

Let \mathcal{L} be a language containing \leq and let M be an o-minimal \mathcal{L} -structure. We say "definable" for "definable with parameters". This sheet is about point-set topology of definable sets.

Exercise 1

The goal of this exercise is to prove that definable sets in \mathbb{R}^m are connected if and only if they are d-connected. Suppose that $M = \mathbb{R}$ with the usual interpretation of the order.

- (a) Let $X \subseteq \mathbb{R}^m$ be a definable set which is connected in the usual topological sense. Show that X is d-connected.
- (b) Let $C \subseteq \mathbb{R}^m$ be a cell. Show that C is connected in the usual topological sense.
- (c) Let $X \subseteq \mathbb{R}^m$ be a d-connected definable set and \mathcal{D} a cellular decomposition of X. Assume that $X = U \cup V$ where U and V are disjoint open sets in X (for the usual topology, so $U = U_1 \cap X$ where $U_1 \subset \mathbb{R}^m$ is open, etc). Show that for any cell C of \mathcal{D} , we have $C \subset U$ or $C \subset V$.
- (d) Deduce that U and V are adapted to \mathcal{D} and conclude that d-connected definable subsets $X \subseteq \mathbb{R}^m$ are connected in the usual sense.
- (e) Find an o-minimal structure *M* and a d-connected definable subset which is not connected in the usual topology.

Exercise 2

We assume that \mathcal{L} extends the language of ordered rings, so that we know that M is a real closed (ordered) field. Let $m \geq 1$ be an integer. We denote $|x| = \max(x, -x)$ for $x \in M$, and we put $||x|| = \max(|x_i|)$ for $x = (x_i) \in M^m$. A subset $X \subset M^m$ is bounded if and only if there exists $A \in M$ such that $||x|| \leq A$ for all $x \in A$.

- (a) Prove that the topology of M^m is generated by the sets of the form $\{x \in M^m \mid ||x x_0|| < \delta\}$ for $x_0 \in M^m$ and $\delta > 0$ in M.
- (b) Let $X \subset M^m$ be definable and let x_0 be an element of M^m belonging to the closure of X. This means that there is a sequence $x_n \in X$ with $\lim_{n\to\infty} x_n = x_0$. Sequences are not definable, but their role can be replaced by definable maps $\gamma: [0, c] \to X$ with $\lim_{x\to 0} \gamma(x) = x_0$.
 - (i) Assume that x₀ ∈ X \ X. Prove that there exists a non-empty open interval I =]0, c[and a definable map γ: I → X such that ||x₀ − γ(t)|| = t for all t ∈ I. Hint: use Exercise 3 of Exercise Sheet 5.
 - (ii) Prove that there exists c > 0 in M and a continuous definable map $\gamma: [0, c[\to X \text{ such that } \lim_{t \to 0} \gamma(t) = x_0.$ Hint: consider separately the case when $x_0 \in X$.

(c) Let $C \subset M^m$ be a bounded cell and \overline{C} its closure. Let $\pi \colon M^m \to M^{m-1}$ be the projection that omits the last coordinate. Show that $\overline{\pi(C)} = \pi(\overline{C})$.

Hint: deal separately with the cases where C is a graph or the space between two graphs of continuous definable functions on $\pi(C)$; apply the previous exercise to show that if $a \in M^{m-1}$ is in the closure of $\pi(C)$, then it is in $\pi(\overline{C})$.

- (d) Let $X \subset M^m$ be closed, bounded and definable. Let $f: X \to M^n$ be definable and continuous. The goal of this exercise is to prove that f(X) is bounded.
 - (i) Assuming that f(X) is not bounded, show that there exists a definable map $g: M \to X$ such that ||f(g(t))|| > t for all $t \in M$.
 - (ii) Show that the limit of g(t) as t → +∞ in X exists.
 Hint: apply the monotonicity theorem to each coordinate of g.
 - (iii) Deduce a contradiction, hence the result.