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Exercise 1
Let K be a fixed field. Define a language L such that K-vector spaces are
naturally L-structures.

Lösung:

Consider the infinite language L = {0, (+, 2), (mk, 1) : k ∈ K}. Given a
vector space (V, 0,+, ·), where · is the scalar multiplication, we interprete
0 and + as they are in V and define (mk) : V → V by v 7→ k · v for every
k ∈ K.

Exercise 2
Let Lr = (+,−, ·, 0, 1) be the language of rings.

(a) Explain why the notion of isomorphic rings (considered as Lr-structures in
the obvious way) corresponds to that of isomorphism in the usual algebraic
sense.

(b) Show that if we consider a field as an Lr-structure, the substructures do
not coincide with the subfields.

Lösung:

(a) Since Lr does not contain relation symbols, the definition of an iso-
morphism of Lr-structures is the same as the definition of a ring-
homomorphism (we use the definition of bijective ring-homorphism
and not that there exists a morphism in both directions here).

(b) Indeed the ring Z is a Lr-substructure of the field Q, but Z is not a
subfield of Q. It holds that every subfield is a Lr substructure.

Exercise 3
In the language (·, e) of groups, show that there exists a sentence φ such that
M |= φ if and only ifM if isomorphic to Z /2Z×Z /2Z.

Lösung:
Consider the sentence

φ = ∃v1v2v3v4
∧
i 6=j

¬(vi = vj) ∧ ∀v5
4∨
i=1

vi = v5 ∧
4∧
i=1

vi · vi = e
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that states that there are four mutually distinct elements and only four that
all have order 2. By the classification of finite groups we know that there
are only two groups with order 4 and only in one of them Z /2Z×Z /2Z
do all elements have order 2.

Exercise 4
Find an axiomatization of integral domains in the language of rings, i.e., a set
A of sentences in the language of rings such that a ring A is an integral domain
if and only if A |= φ for all φ ∈ A.

Lösung:
We first need the axioms for a ring (ring with 1):

φ0 : ¬0 = 1

φ1 : ∀abc : (a+ b) + c = a+ (b+ c)

φ2 : ∀a : 0 + a = a ∧ a+ 0 = a

φ3 : ∀a∃b : a+ b = 0

φ4 : ∀ab : a+ b = b+ a

φ5 : ∀abc : (a · b) · c = a · (b · c)
φ6 : ∀a : 1 · a = a ∧ a · 1 = a

φ7 : ∀abc : (a+ b) · c = (a · c) + (b · c) ∧ a · (b+ c) = (a · b) + (a · c)

An integral domain additionally satisfies

φ8 : ∀ab : a · b = b · a
φ9 : ∀ab : a = 0 ∨ b = 0 ∨ ¬a · b = 0

Then A = {φi : i ∈ {0, . . . , 9}} is an axiomatisation of integral domains in
the language of rings.

Exercise 5
Find a language L and a sentence φ in L such that the set of cardinalities of
the finite L-structures that satisfy φ coincides with the set of powers of primes
(excluding p0 = 1).

Lösung:
We note that finite fields always have order a power of a prime. This is
because every field F has a prime number p as the characteristic and every
finite field is also a finite-dimensional vectorspace over that field. Finite
dimensional vectorspaces are isomorphic to Fn, which has |F |n = pn many
elements.

To describe fields we use the language of rings L and we can use the
axioms φ0, . . . , φ8 from the solution to the previous exercise, but we have
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to also add in

ψ1 = ∀ab : a · b = b · a
ψ2 = ∀a : a = 0 ∨ ∃b(a · b) = 1

The sentence

φ =

8∧
i=0

φi ∧ ψ1 ∧ ψ2

is an L-sentence and every finite L-structure satisfying φ is a finite field
and hence has order a prime power. On the other hand, for every prime
power there is a finite field with that order. These can be constructed as
Fp[X]/f(X), where f(X) is an irreducible polynomial.

Exercise 6
In the language L = (+, 0) (with + a binary function and 0 a constant), show
that there exists a sentence φ such that Z×Z |= φ but Z 6|= φ (we say that
Z×Z and Z are not elementarily equivalent)

Lösung:
We note that the sum of two odd elements in Z is even. However, in Z×Z,
the elements (1, 0) and (0, 1) should be considered odd (not divisible by 2),
but also (1, 0) + (0, 1) = (1, 1) is odd. The sentence

φ = ∀ab : (¬∃a′ : a′ + a′ = a ∧ ¬∃b′ : b′ + b′ = b)→ ∃c : c+ c = a+ b

encodes this.

Exercise 7
Let Lr = (+,−, ·, 0, 1) be the language of rings. Let M = C(T ) viewed as an
Lr-structure in the obvious way.

(a) Show that there do not exist non-constant rational functions f, g ∈ C(T )
such that g2 = f3 + 1.

(b) Deduce that the formula φ(v) = ∃x∃y : (y2 = v ∧ x3 + 1 = v) has the
property that φ(C(T )) = C (so the field of constants is definable in C(T ).)

Lösung:

(a) We give two proofs. One uses Algebraic Geometry, the other is ele-
mentary, but rather long.
Proposition 0.1. There are no non-constant rational functions f , g
in C(T ) such that

f2 = g3 + 1.
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Algebraic geometry. If one knows some algebraic geometry, the argu-
ment is that (f, g) would define a non-constant morphism of curves

A1 − {poles of f or g} → E

where E is the (projective) elliptic curve with Weierstrasse equation
y2 = x3+1. But then this would extend to a non-constant morphism of
curves P1 → E (by known properties of projective curves), and this is
not possible since the genus can only decrease under such morphisms,
but the genus of P1 is 0 and that of E is 1.

Descent. Writing f = a/b and g = c/d with (a, b) = (c, d) = 1 (copri-
me), the equation becomes

a2d3 = c3b2 + b2d3 = b2(c− d)(d− ζd)(c− ζ2d)

where ζ = e2iπ/3.

We have b2 | a2d3 and b is coprime to a so b2 | d3. Similarly, from the
fact that d3 | b2(c− d)(c− ζd)(c− ζ2d), but d is coprime to c so also
coprime to each of the three factors c − ζjd, we deduce that d3 | b2.
Combining, we conclude that in fact b2 = αd3 for some α ∈ C×. The
polynomial equation becomes

a2 = α(c− d)(c− ζd)(c− ζ2d). (1)

We now claim that there exist β, γ, δ in C× such that

αd, β(c− d), γ(c− ζd), δ(c− ζ2d)

are all squares in C[T ].
For the first, this follows from αd = (b/d)2 (and because a polynomial
which is the square of a rational function is the square of a polynomi-
al).

For the others, this follows from (1) and unique factorization in C[T ],
since all three factors c − d, c − ζd and c − ζ2d are pairwise coprime
(the equation implies that the order of vanishing of any of the three
polynomials at any point is even, and only one can be non-zero).

Now the lemma which follows gives the result.

Lemma 0.2. Let c, d be coprime polynomials in C[T ]. Assume that
there exist combinations λic + µid which are squares for 1 ≤ i ≤ 4,
with the lines λiX + µiY = 0 distinct. Then c and d are constant.

Proof. If the statement is wrong, then there is a pair of polynomials
(c, d) satisfying the conditions with max(deg(c),deg(d)) minimal and
positive. We will see that this is impossible by infinite descent. To do
this, assume that (c, d) is chosen with this property.
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By linear changes of variables, we can assume that for some λ /∈ {0, 1},
the polynomials

c, c− d, c− λd, d

are squares (this will note change max(deg(c),deg(d)). We then see
in particular that if c or d is constant, then so is the other so both c
and d are non-constant.

We write c = γ2 and d = δ2; the polynomials γ and δ are coprime,
and

max(deg(γ),deg(δ)) < max(deg(c),deg(d)).

Now observe that

c− d = γ2 − δ2 = (γ − δ)(γ + δ)

but c− d is a square and γ− δ is coprime to γ+ δ, so that both γ− δ
and γ + δ are squares.

Similarly, we can write

c− λd = u2 − λv2 = (u− µv)(u+ µv)

where µ2 = λ. The left-hand side is a square, the two factors on the
right are coprime (because µ 6= 0) so they are both squares.

We thus have the two polynomials γ and δ such that

γ − δ, γ + δ, γ − µδ, γ + µδ,

are all squares, but have smaller max(deg(γ),deg(δ)) than before,
which is a contradiction (note that the coefficients do define four dif-
ferent lines since λ 6= 1).

(b) We have
φ(C(T )) = {v ∈ C(T ) : C(T ) |= φ(v)}

We note that every constant function satisfies φ due to the funda-
mental theorem of algebra. On the other hand, if v ∈ C(T ) is a func-
tion that satisfies φ, then we have other functions f, g ∈ C(T ) with
g2(T ) = v(T ) = f3(T ) + 1. From (a) we conclude that f and g must
be constant and hence also v = g2 is constant.
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