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Solutions to sheet 2

Exercise 1

Let £ = {(FE,2)} be the language of graphs containing a single binary relation
E. Prove that there is no £-theory 7" whose models are exactly the trees.

Solution:

Graphs are L-structures by considering the vertices as elements of the uni-
verse and by having the relation E(x,y) between two vertices z,y if and
only if there is an edge between z,y. We assume for contradiction that the-
re is an L-theory T, whose models are exactly trees. We introduce a new
Language £’ = L U {a,b}, where a and b are constant-symbols. For n € N,
we then consider the £’-sentences

n—1
¢n = IT1...Tp, 1 =aANTH, =bA /\ E(‘rivxi'f'l)vxi:xi"'l
=1

which intuitively say that there is no path of length at most n between a
and b. We consider the £'-theory T/ = T U {¢,: n € N} and show that
it is finitely satifyable. Indeed, let A C T’ be a finite subset. Let N =
max{n € N: ¢,, € A}. We construct a £'-model (the infinite linear graph)
M satisfying A: Let Z be the universe and Exq(z1, 22) if and only if |23 —
zo| = 1. We may choose apq = 0 and byy = N + 1. Since M is a tree, it
satisfies M |= T and by the choice of ap,bp M | ¢, for n < N, hence
M = A. By the compactness-theorem, there exists a model A of T”. Since
N = T, N has to be a tree (with marked points ax and by). But since
N E ¢, for all n € N, it is not possible to connect ax and by by a path,
hence A is not connected. This is a contradiction, and hence there is no
theory T that axiomatizes trees in the language L.

Exercise 2

Let £ be a language and T' an L-theory. Let ¢(x,y) be a formula with two
variables. Assume that for every model M of T and every b € M, the set

p(M,b) ={a€M | M= ¢(a,b)}

is finite.
Prove that there is an integer C' > 0 such that all the sets ¢(M,b) have
cardinality at most C, as M ranges over models of T" and b ranges over M.
Hint: assume this is false, and then expand the language with infinitely many
new constant symbols (¢;), and an additional constant t, and expand the theory in
a suitable way, so that after showing that it is finitely-satisfiable, a contradiction
follows.

Solution:
We assume for contradiction that for every n € N there is a model M,, of
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T and an element b, € M, such that |p(M,,b,)| > n. We define a new
language £’ = LU {¢;: i € N} U {t}, where the ¢; and the ¢ are constant-
symbols. We consider the £'-sentences

n

Yo = N c#en N\elet)

ij=Li#j i=1

which intuitively say that ¢y, .. ., ¢, are distinct elements of (M, t). We now
consider the £'-theory TV = T U {¢,,: n € N}. We show that T” is finitely
satisfyable: Let A C T” be a finite subset and let N = max{n € N: ¢,, €
A}. Then we construct a model M by extending My by choosing distinct
(ci)m € o(Mpy,bn) (which exist by assumption) and ¢y = by. Note that
M =T, since My =T and that M |= A by our choice of (¢;) s and tag.
By the compactness theorem, it follows that there is a model A" = T". Since
N E T, we know that o(N,tx) is finite. But if N = |p(N,tn)| € N, we
know that N = ¥n11, hence there are N + 1 distinct elements (¢;)n € N
that all lie in (N, tr). This is a contradiction, and hence our assumption
must be false, i.e. the cardinalities of ¢(M,b) have to be bounded by a
uniform constant C' € N.

Exercise 3

1. Let E be a finite field and let E be an algebraic closure of F. Let n > 1

be an integer and let f1, ..., f, be polynomials in E[X1,..., X,]. Assume
that the map « = (x;) — (f;(x)) is injective. Prove that this map is also
surjective.

Solution:

Note that in a finite field E, any injective map E™ — E™ is also
surjective. Unfortunately, the algebraic closure E of a finite field is
not finite, but we can fix this as follows: Consider the coefficients
al € F that appear in the polynomials

filX) = Zm:agxi.
j=1

We assume that the map E® — E™ given by the polynomials f;
is injective. We have to show that it is surjective. So consider b =
(b1,...,bn) € E™. We have to find a preimage of b.

Consider the algebraic field-extension F = E[ag ,b;] generated by
the elements ag,bi € E. The field F is finite and the polynomials
define an injective map F™ — F"™, hence there exists a preimage
a = (ay,...,an) € F™, that gets sent to b. Hence both the maps
F™ — F™ and E™ — E™ are surjective.

2. Give an example to show that “injective” and “surjective” cannot be swit-
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ched.

Solution:

The map E — FE defined by z — z? — x is surjective since E is
algebraically closed. But it is not injective since both 0 and 1 get sent
to 0 in every field.

2

3. Show that an ultrafilter is principal if and only if it contains a finite set.

Solution:

Let X be a set and F C P(X) an ultrafilter on X. If F is principal,
then by definition there exists x € X with F = {A: 2z € A}, in
particular {z} € F, hence F contains a finite set.

Let on the other hand A € F be a finite subset of X. Without loss of
generality, we may assume |A| = min{|B|: B € F} > 0, (B # 0 by
(F1) ). Let « € A. Since F is an ultrafilter, we know that either {z}
or X \{z}isin F. If {z} € F we are done. If X \ {2} € F, then by
(F2) also AN (X \{z}) = A\ {z} € F, which contradicts minimality
of |A| and thus this case does not happen.

4. Let C be a non-principal ultraproduct of fields £, which are algebraic
closures of I, as p ranges over all prime numbers. Show that C is an
algebraically-closed field of characteristic 0.

Solution:

We use Los’ theorem about non-principal ultraproducts to prove the
statements. Let £ be the language of rings. The fields E, as well as
the non-principal ultraproduct C' are L-strucutres. We can encode the
axioms of fields as £-sentences and since they hold in F, for all p, they
also hold in C' (by Los). For being algebraically closed, a similar trick
works, consider the L£-sentences

-1
on = Vag,...,ap3x,apx™ +ap_12" +...+ax+a9=0

for n € N and note that they hold for E, and thus also for C' (by Los).
To show that C' has characteristic 0, we use

Yp = 1414 41=0
—_——

n—times

and notice that E, |= 1, for all but one p. Since we take the product
over a non-principal ultrafilter F, the set {p: E, = ¢¥n} = {n} ¢ F
(by def of non-principal or by part 3) and hence by Los, C }= 1, for
all n € N. Since the field C has no finite characteristic, it must have
characteristic 0.

5. Show that the cardinality of C is bounded by that of C.
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Solution:
The ultraproduct C' is a quotient of the countable product Hp E, of

countable sets and hence has cardinality at most Ng” =N, <|C|.

6. Show that there exists a family (f;):er of maps f;: N — Q such that, for
all t # s € R, the set

{n=01] fi(n) = fs(n)}

is finite

Hint: consider for each t a sequence of rational numbers converging to t.

Solution:

For ¢+ € R consider a sequence of rational numbers
(f:(1), f1(2), f1(3),...) converging to t € R. The function f;: N — Q
satisfies for t # s,

{n =01 fi(n) = fs(n)}| < o0

which is what we required.

7. Deduce the existence of a family of maps g; from the set of primes to the
disjoint union of all E, such that g;(p) € E, for all primes p and for all
t # s € R, the set
{p=01 g(p) =9s(p)}

is finite.

Solution:
The fields E, are countable, so let v,: Q — E, be a bijection. We
then define

9:(p) == vp(fe(p))
using f; from part 6. Clearly g:(p) € E, and the set

{p=0] g:lp) =9s(p)} ={p >0: fi(p) = fs(p)}

is finite for s # ¢ (as in part 6).

8. Deduce that the cardinality of C' is equal to that of C, and conclude that
C' is isomorphic to C as a field. (Use the fact that algebraically closed
fields of characteristic 0 are isomorphic if and only if they have the same
cardinality.)
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Solution:
We define a function f by

R%HE],H»HEP
p F

t = (g:(p)p = f(D)-

We want to show that f is injective. By the definition of the ultrapro-
duct we have f(t) = f(s) if and only if {p > 1: g;(p) = gs(p)} € F.
But this set is finite for s # t by part 7 and a non-principal ultrafilter
does not contain finite sets by part 3. Hence f(s) # f(t) and f is
injective. We conclude that |R| < |C| and together with part 5 that
|IR| =|C| = |C|. A general fact from algebra tells us now that alge-
braically closed fields of characteristic 0 and of the same cardinality
are isomorphic. Hence C' is isomorphic to C.

9. Let g1, ..., gn be elements of C[ X1, ..., X,,]. If the map z = (z;) — (g;(2))
is injective from C" to itself, then it is surjective.

Solution:
‘We can write this statement as first-order sentences:

n m

m
. o .
Pn,m = vala"'ch?, nya/\ E agl‘j = E a‘gyj —T=Y
Jj=1

i=1j=1

n m
— V@/l,-u,ynE'xu---,iEm /\ E aZIf =Y

i=1j=1

and we have E, = ¢, for all n,m € N by part 1. By Los, also
C = ¢n.m and hence C = ¢, by part 8. Thus for all m € N and for
all polynomials (of degree at most m), if the map defined from C" to
itself is injective, then it is surjective.

Note that the existence of a non-principal ultrafilter, the bijection
Q — E, and the isomorphism C' — C are all non-canonical choices.
Thus this proof is highly non-constructive.




