Solutions: Sheet 3

Exercise 1

Let $\mathcal{L} = (+, -, \cdot, 0, 1)$ be the language of rings, and let T be the \mathcal{L} -theory of finite fields, namely, the theory whose sentences are those \mathcal{L} -sentences ϕ such that $E \models \phi$ for all finite fields E.

(a) Show that T has models of characteristic 0, and infinite models of characteristic p for any prime number p.

Solution:

For a model of characteristic 0 we can choose a non-principal ultrafilter on the prime numbers and use the ultraproduct $C = \prod_{\mathcal{F}} \mathbb{F}_p$ over the finite fields \mathbb{F}_p . Since all sentences in T are satisfied in all finite fields \mathbb{F}_p , and $\emptyset \notin \mathcal{F}$, by Los theorem, $C \models T$.

For characteristic p we can choose finite fields of order p^n of characteristic p and a non-principal ultrafilter on the natural numbers. By the same argument as above the ultraproduct is a model of T and the ultraproduct is infinite as it contains subfields of size p^n for increasing n.

(b) Show that any model of T is a perfect field (i.e., it is either of characteristic 0, or the Frobenius morphism $x \mapsto x^p$ is surjective).

Solution:

We first note that for finite fields of characteristic p, the Frobenius map $x \mapsto x^p$ is a homomorphism (this can be seen by binomial-expansion). In finite fields of characteristic p, the Frobenius homomorphism has trivial kernel (since otherwise we there would be zero-divisors) and hence is injective. An injective map from a finite set to itself is also surjective, hence the \mathcal{L} -sentences

$$\varphi_p = \underbrace{1+1+\ldots+1}_{p-\text{times}} = 0 \to \forall y \exists x, \underbrace{x \cdot x \cdots x}_{p-\text{times}} = y$$

holds in every finite field, hence also holds in every model of T. If the characteristic of a model $\mathcal{M} \models T$ is $p \neq 0$, then $\mathcal{M} \models \varphi_p$ and hence the Frobenius-map is surjective.

(c) Let K be a field. Show that for every integer $n \ge 1$, there exists a formula $\phi_n(v_0, \ldots, v_{n-1})$ such that $K \models \phi_n(a_0, \ldots, a_{n-1})$ if and only if the polynomial

$$X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0} = 0$$

is irreducible.

Solution: A polynomial $f(X) = \sum v_i X^i$ is irreducible iff for any polynomials $h, g, h(X) \cdot g(X) = f(X)$ implies that h or g are constant polynomials. $\phi_n(v_0, \dots, v_{n-1}) = \forall b_0, \dots, b_n, c_0, \dots, c_n,$ $\left(\forall x, \left(\sum_{i=0}^n b_i x^i \right) \cdot \left(\sum_{i=0}^n c_i x^i \right) = \sum_{i=0}^n v_i x^i \right) \rightarrow$ $\bigwedge_{i=1}^n b_i = 0 \lor \bigwedge_{i=1}^n c_i = 0$

(d) Show that if K is a model of T, then K is not algebraically closed, and in fact admits for any $n \ge 1$ at least one extension of degree n in an algebraic closure \bar{K} of K.

Solution:

Finite fields are not algebraically closed, so there exists an irreducible polynomial. In fact for every n, there exists an irreducible polynomial of degree n This can be formulated as an \mathcal{L} -sentence

$$\exists v_0,\ldots,v_{n-1},\phi_n(v_0,\ldots,v_{n-1})$$

and hence also holds in any model of T. Hence no model of T is algebraically closed.

(e) Show that there exist formulas $\pi_n(v, a, b, c)$ (resp. $\mu_n(v, a, b, c)$), where for $I = \{0, 1, \ldots, n-1\}, v = (v_i)_{i \in I}, a = (a_i)_{i \in I}, b = (b_i)_{i \in I}$ and $c = (c_i)_{i \in I}$ are variables, such that if K is a model of T and v, a, b, $c \in K^n$, then $K \models \pi_n(v, a, b, c)$ if and only if

$$\sum_{i=0}^{n-1} a_i \alpha^i + \sum_{i=0}^{n-1} b_i \alpha^i = \sum_{i=0}^{n-1} c_i \alpha^i,$$

resp. $K \models \mu_n(v, a, b, c)$ if and only if

$$\left(\sum_{i=0}^{n-1} a_i \alpha^i\right) \cdot \left(\sum_{i=0}^{n-1} b_i \alpha^i\right) = \sum_{i=0}^{n-1} c_i \alpha^i,$$

where α is the class of X in the ring

$$K[X]/(v_0 + v_1X + \dots + v_{n-1}X^{n-1} + X^n).$$

Hint: multiplication by α can be expressed as a matrix acting on the vectorspace $K_n[X]$.

Solution:

The elements of K[X]/f(X) can be expressed as $a = \sum_{i=0}^{n-1} a_i \alpha^i$, where α is the class of X in K[X]/f(X) and $f(X) = \sum v_i X^i$. The sum of two such elements coincides with the sum in K[X]/f(X) viewed as a K-vectorspace. Hence

$$\pi_n(v, a, b, c) \quad = \quad \bigwedge_{i=0}^{n-1} a_i + b_i = c_i$$

is an \mathcal{L} -formula describing the addition. The multiplication is more complicated, as for instance

$$\alpha^{n-1} \cdot \alpha^{n-1} = \alpha^{2n-2} = \alpha^n \alpha^{n-2} = \left(-\sum_{i=0}^{n-1} v_i \alpha^i\right) \cdot \alpha^{n-2} = \dots$$

is not straightforward to calculate. The trick is to see multiplication by α as a matrix-multiplication on the vector space K[X]/f(X). In fact, we have

$$\alpha \cdot a = b \quad \iff \quad \begin{pmatrix} 0 & & & -v_0 \\ 1 & 0 & & -v_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & & \\ & & & 1 & 0 & -v_{n-2} \\ & & & & 1 & -v_{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix}$$

and the equation for $\mu_n(v, a, b, c)$ becomes a system of linear equations which can be expressed in a \mathcal{L} -formula, but becomes quite complicated.

(f) Show that there is a \mathcal{L} -formula $\theta_n(w, v, a, b)$ expressing that $f(a) = b \in K[X]/g(X)$, where

$$f(X) = \sum_{i=0}^{n} v_i X^i, \quad g(X) = \sum_{i=0}^{n} w_i X^i$$

are two monic polynomials of degree n.

Solution: We write

$$a = \sum_{i=0}^{n-1} a_i \alpha^i$$
 and $b = \sum_{i=0}^{n-1} b_i \alpha^i$,

where α is the class of X in K[X]/g(X). We introduce new variables $a^{\ell} = ((a^{\ell})_0, (a^{\ell})_1, \dots, (a^{\ell})_{n-1})$ for $0 \leq \ell \leq n$ for the powers of a

$$a^{\ell} = \sum_{i=0}^{n-1} (a^{\ell})_i \alpha^i \in K[X]/g(X).$$

Using (e) we can formulate this as a \mathcal{L} -formula by writing $\theta_{n,1}(w, a, a^0, \dots, a^n) = (a^0)_0 = 1 \wedge \bigwedge_{i=1}^{n-1} (a^0)_i = 0 \wedge \bigwedge_{i=0}^{n-1} (a^1)_i = a_i$ $\wedge \bigwedge_{\ell=2}^n \mu_n(w, a, a^{\ell-1}, a^\ell)$ Next we introduce new elements $c^\ell = ((c^\ell)_0, (c^\ell)_1, \dots, (c^\ell)_{n-1})$ for $0 \leq \ell \leq n$ such that $c^\ell = \sum_{i=0}^\ell v_i a^i \in K[X]/g(X),$ which we can write as a \mathcal{L} -sentence by $\theta_{n,2}(w, v, a, a^0, \dots, a^n, c^0, \dots, c^n) =$ $(c^0)_0 = v_0 \wedge \bigwedge_{i=1}^n (c^0)_i = 0 \wedge$ $\bigwedge_{\ell=1}^n \pi_n(w, c^{\ell-1}, (v_\ell \cdot (a^\ell)_0, v_\ell \cdot (a^\ell)_1, \dots, v_\ell \cdot (a^\ell)_n), c^\ell)$ The statement f(a) = b can be described as an \mathcal{L} -sentence $\theta_n(w, v, a, b) = \exists (a^0)_0, \dots, (a^n)_{n-1}, (c^0)_0, \dots, (c^n)_{n-1}, \theta_{n,1}(w, a, a^0, \dots, a^n) \wedge \theta_{n,2}(w, v, a, a^0, \dots, a^n, c^0, \dots, c^n) \wedge$ $\bigwedge_{i=1}^{n-1} (c^n)_i = b_i.$

(g) Let K be a model of T and $f \in K[X]$ a monic degree n polynomial. Show that if f is irreducible, then any root of f generates its splitting field K[X]/f(X). (This statement holds for finite fields.)

Solution:

We first express the following statement as an \mathcal{L} -sentence: any root $a \in$

$$\begin{split} K[X]/f(X) & \text{ of } f \text{ generates } n \text{ distinct roots } b^1, \dots, b^n \in K[X]/f(X). \\ \theta_{n,3}(v) &= \forall a_0, \dots, a_{n-1}, \theta_n(v, v, a, 0) \land \\ \exists (b^1)_0, \dots, (b^n)_{n-1}, \bigwedge_{\ell=1}^n \theta_n(v, v, b^\ell, 0) \land \\ & \bigwedge_{k \neq \ell = 1}^n \bigvee_{i=0}^{n-1} (b^k)_i \neq (b^\ell)_i \land \\ & \bigwedge_{\ell=1}^n \exists c_0, \dots, c_{n-1}, \theta_n(v, (c_0, \dots, c_{n-1}, 0), a, b^\ell). \end{split}$$
If $\theta_{n,3}$ holds, then it follows that the whole splitting field K[X]/f(X)

If $\theta_{n,3}$ holds, then it follows that the whole splitting field K[X]/f(X)is generated by *a*. Finally we can express the statement, if a monic degree *n* polynomial $f \in K[X]$ is irreducible, then any root of *f* generates its splitting field K[X]/f(X) by

$$\theta_{n,4} = \forall v_0, \dots, v_n, (v_n = 1 \land \phi_n(v)) \rightarrow \theta_{n,3}(v),$$

where we used ϕ_n from (c) to express irreducibility.

Since this statement holds for all finite fields, it holds for K.

(h) Deduce that if K is a model of T and \overline{K} is an algebraic closure of K, then for any integer $n \ge 1$, the field K has a unique extension of degree n in \overline{K} . (This statement holds for finite fields.)

Hint: using the previous questions, show how to express, using the language of rings, the fact that if we have two irreducible polynomials f and g of degree n, then the roots of f are in the field generated by the roots of g.

Solution:

We want to write an \mathcal{L} -sentence ψ_n to formalize that if $f, g \in K[X]$ are irreducible monic polynomials of degree n, then there is an element $b \in K[X]/g(X)$ such that $f(b) = 0 \in K[X]/g(X)$. We then note that ψ_n holds for all finite fields, hence also for K. By $K \models \psi_n$, there is a root b of f in the field K[X]/g(X) and hence by (g), $K[X]/f(X) \subseteq K[X]/g(X)$. Clearly we can switch f and g to get equality.

It remains to formalize ψ_n :

$$\psi_n = \forall v_0, \dots, v_n, w_0, \dots, w_n, (v_n = 1 \land w_n = 1 \land \phi_n(v) \land \phi_n(w)) \rightarrow \\ \exists b_0, \dots, b_{n-1}, \theta_n(w, v, b, 0).$$

Exercise 2

(a) Following the methods seen in class for real-closed fields, prove that the theory ACF of algebraically closed fields has q.e. in the language of rings.

Solution:

In Chapter IV, section 2 a model theoretic criterion for having quantifier elimination was given. It thus suffices to show the following:

Let $\mathcal{M}, \mathcal{N} \models ACF$ be models of $ACF, \mathcal{A} \subseteq \mathcal{M} \cap \mathcal{N}$ be a substructure and

$$\varphi(\underline{\mathbf{x}}) = \exists y, \psi(\underline{\mathbf{x}}, y)$$

where $\underline{\mathbf{x}} = (x_1, \ldots, x_n)$ and $\psi(\underline{\mathbf{x}}, y)$ is a quantifier-free formula. Let $\underline{\mathbf{a}} = (a_1, \ldots, a_n) \in \mathcal{A}^n$ such that $\mathcal{M} \models \varphi(\underline{\mathbf{a}})$. Then we have to prove that also $\mathcal{N} \models \varphi(\underline{\mathbf{a}})$.

Since there are no relations in the language of rings, we may assume that ψ is of the form

$$\psi(\underline{\mathbf{x}}, y) = \bigvee_{i=1}^{n_i} \bigwedge_{j=1}^{n_j} t_{ij}(\underline{\mathbf{x}}, y)$$

where the terms t_{ij} are either $p_{ij}(\underline{\mathbf{x}}, y) = 0$ or $\neg q_{ij}(\underline{\mathbf{x}}, y) = 0$ for polynomials $p_{ij}, q_{ij} \in \mathbb{Q}[\underline{\mathbf{x}}, y]$. Since $\mathcal{M} \models \varphi(\underline{\mathbf{a}})$ holds, let $b \in \mathcal{M}$ such that $\mathcal{M} \models \psi(\underline{\mathbf{a}}, b)$. So there is an *i*, such that

$$\mathcal{M} \models \bigwedge_{j=1}^{k} p_{ij}(\underline{\mathbf{a}}, b) = 0 \land \bigwedge_{j=k+1}^{n_j} \neg q_{ij}(\underline{\mathbf{a}}, b) = 0$$

If there is a term t_{ij} with $j \leq k$ that has $p_{ij}(\underline{x}, y) \neq 0$, then b is algebraic over \mathcal{A} . Since \mathcal{N} is algebraically closed, $b \in \mathcal{N}$ and $\mathcal{N} \models \psi(\underline{a}, b)$. Thus $\mathcal{N} \models \varphi(\underline{a})$.

If all the polynomials $p_{ij}(\underline{x}, y) \equiv 0$, then

$$\bigwedge_{j=k+1}^{n_j} q(\underline{\mathbf{a}}, y) \neq 0$$

has only finitely many solutions y in the infinite field \mathcal{N} , so taking any one of these solutions c will give us $\mathcal{N} \models \psi(\underline{\mathbf{a}}, c)$ and hence $\mathcal{N} \models \varphi(\underline{\mathbf{a}})$.

(b) Show that if $F_1 \subset F_2$ are algebraically closed, then $F_2 \equiv F_1$ (i.e., they are elementarily equivalent).

Solution:

Let φ be an \mathcal{L} -sentence. with $F_1 \models \varphi$. Then we know by quantifier elimination that φ is equivalent (modulo ACF) to a quantifier-free \mathcal{L} -sentence

$$\psi = \bigvee_{i} \bigwedge_{j} t_{ij},$$

where t_{ij} are terms that are (in)equalities of polynomials of the constant symbols 0 or 1. Since $F_1 \models ACF$, we have $F_1 \models \psi$. Since

 $F_1 \subseteq F_2$, they have the same characteristic p and there is a *prime-field* \mathbb{F}_p or $\mathbb{F}_0 := \mathbb{Q}$ contained in F_1 . Thus ψ is really just a statement about (in)equalities of elements in the prime field. Such statements are true in F_1 if and only they are true in the prime field. We get

$$F_1 \models \varphi \iff F_1 \models \psi \iff \mathbb{F}_p \models \psi \iff F_2 \models \psi \iff F_2 \models \varphi.$$

This means F_1 and F_2 are elementarily equivalent.

(c) Let p be a prime number or zero, and ACF_p the theory of algebraically closed fields of characteristic p. Show that the theory ACF_p is complete (i.e., for any sentence ϕ in the language of rings, either $ACF_p \models \phi$ or $ACF_p \models \neg \phi$).

Solution:

- Let ϕ be a sentence. By the argument in (b), $F \models \phi$ if and only if $\mathbb{F}_p \models \phi$, as long as $F \models ACF_p$. So if $\mathbb{F}_p \models \phi$, then $F \models \phi$ for all $F \models ACF_p$, i.e. $ACF_p \models \phi$. Otherwise $\mathbb{F}_p \models \neg \phi$, then $F \models \neg \phi$ for all $F \models ACF_p$, i.e. $ACF_p \models \neg \phi$. This shows ACF_p is complete.
- (d) Let F be an algebraically closed field. Show that definable subsets of F are either finite or have finite complement.

Solution:

Consider the definable subset $\varphi(F) = \{a \in F : F \models \varphi(a)\}$. By quantifier elimination, $\varphi(F) = \psi(F)$ for a quantifier-free formula $\psi(x)$ with one free variable x. As in (a) we may assume

$$\psi(x) = \bigvee_{i} \psi_{i}(x) \quad \text{with}$$
$$\psi_{i}(x) = \bigwedge_{j=1}^{k} p_{ij}(x) = 0 \land \bigwedge_{j=k+1}^{n_{j}} \neg q_{ij}(x) = 0$$

For every *i*, if there is a $j \leq n_j$ with $p_{ij} \neq 0$, then $\psi_i(F)$ is finite, since it consists of at most deg p_{ij} many solutions to the polynomial p_{ij} . If for all $i, p_{ij} \equiv 0$, then $\psi_i(F)$ is cofinite $(F \setminus \psi_i(F)$ is finite), since only for finitely many $a \in F$, $q_{ij}(a) = 0$. We see that

$$\psi(F) = \bigcup_i \psi_i(F)$$

is a union of finitely many finite or cofinite sets and hence is also finite or cofinite.

(e) Let F be an algebraically closed field, $m \ge 0$ an integer and $P \subset F[X_1, \ldots, X_m]$ a prime ideal. Show that there exists $(x_1, \ldots, x_m) \in F^m$ such that f(x) = 0for all $f \in P$. This is known as Hilbert's Nullstellensatz. Hint: use Hilbert's Basis-Satz to reduce to finitely many equations to be able to find an x with this property in some algebraically closed extension of F.

Solution:

Hilbert's Basis-Satz states that every ideal in a polynomial ring is finitely generated. Let thus f_1, \ldots, f_n be generators of the ideal P. Since P is a prime ideal, $F[X_1, \ldots, X_m]/P$ is an integral domain and we can take an algebraic closure \overline{F} of its field of fractions $\operatorname{Frac}(F[X_1, \ldots, X_m]/P)$. We have an inclusion $F \subseteq \overline{F}$ of algebraically closed fields and thus by (b) elementary equivalence. Consider the sentence

$$\varphi = \exists x_1, \dots, x_m \bigwedge_{i=1}^n f_i(x_1, \dots, x_m) = 0$$

which holds in \overline{F} , since we can consider the elements $x_i = [X_i]$. By elementary equivalence, $\overline{F} \models \varphi$ implies $F \models \varphi$. Since $P = \langle f_1, \ldots, f_n \rangle$ there are $a_1, \ldots, a_m \in F$ such that $f(a_1, \ldots, a_m) = 0$ for all $f \in P$.

- (f) Let ϕ be a sentence in the language of rings. Show that the following properties are equivalent:
 - (a) $ACF_0 \models \phi$
 - (b) $ACF_p \models \phi$ for all primes p large enough (depending on ϕ)
 - (c) $ACF_p \models \phi$ for all primes p in an infinite set (depending on ϕ)

Hint: Use compactness and completeness.

Solution:

(a) \implies (b), We have $ACF_0 \models \phi$. By quantifier elimination, let

$$\psi = \bigvee_{i} \bigwedge_{j} (\neg) z_{ij} = 0$$

with $z_{ij} \in \mathbb{Z}$ be an equivalent formula (mod ACF). Choose a prime $p > \max\{|z_{ij}|\}$. Then we have for all i, j that $\mathbb{Q} \models z_{ij} = 0$ if and only if $\mathbb{F}_p \models z_{ij} = 0$. Thus

$$ACF_0 \models \phi \iff ACF_0 \models \psi \iff \mathbb{Q} \models \psi \iff \mathbb{F}_p \models \psi$$
$$\iff ACF_p \models \psi \iff ACF_p \models \phi.$$

(b) \implies (c), This is immediate. The infinite set is the set of all primes that are large enough in (b).

(c) \implies (a), Let p_1, p_2, \ldots be such that $ACF_{p_i} \models \phi$ for $i = 1, 2, \ldots$. Consider the \mathcal{L} -sentence

$$\varphi_n = (\neg \underbrace{1+1+\ldots+1}_{n-\text{times}} = 0) \land \phi$$

and the \mathcal{L} -theory $T = ACF \cup \{\varphi_n : n = 1, 2, \ldots\}$. We show that T is finitely satisfiable: let $\Delta \subseteq T$ and let i be such that $p_i > \max n : \varphi_n \in \Delta$. Then we have $\overline{\mathbb{F}}_{p_i} \models \Delta$, since $ACF_{p_i} \models \phi$ and $ACF_{p_i} \models \neg \underbrace{1+1+\ldots+1}_{n-\text{times}} = 0$ for all $n < p_i$.

By the compactness theorem there is a model $\mathcal{M} \models T$. This model \mathcal{M} is a field and has to have characteristic 0, since it cannot have finite characteristic by $\mathcal{M} \models \varphi_n$ for all $n \in \mathbb{N}$. By completeness \mathcal{M} is elementarily equivalent to every model of ACF_0 and hence $ACF_0 \models \phi$.

(g) Deduce from the previous question another solution of Question 9 of Exercise 3 of Sheet 2: every injective map $\mathbb{C}^n \to \mathbb{C}^n$ given by polynomials is surjective.

Solution:

We write a finite set of polynomials in n variables and degree at most d in multiindex notation as $f_i(\underline{\mathbf{X}}) = \sum_{\alpha} a_{\alpha}^i \underline{\mathbf{X}}^{\alpha}$. We can write that injectivity implies surjectivity as a first order formula in the following way:

$$\varphi_{n,d} = \forall a^i_\alpha \left(\forall \underline{\mathbf{x}}, \underline{\mathbf{y}} \left(\bigwedge_{i=1}^n \sum_\alpha a^i_\alpha(\underline{\mathbf{x}})^\alpha = \sum_\alpha a^i_\alpha(\underline{\mathbf{y}})^\alpha \right) \to \underline{\mathbf{x}} = \underline{\mathbf{y}} \right)$$
$$\to \left(\forall \underline{\mathbf{y}} = (y_1, \dots, y_n) \exists \underline{\mathbf{x}}, \bigwedge_{i=1}^n \sum_\alpha a^i_\alpha(\underline{\mathbf{x}})^\alpha = y_i \right)$$

For all n, d, the sentence $\phi_{n,d}$ holds in finite fields (just because every injective map from a finite set to itself is surjective). As in Question 1 of Exercise 3 of Sheet 2, $\phi_{n,d}$ also holds in the algebraic closures of finite fields, since we can take the finite extensions of \mathbb{F}_p by the elements a_{α}^i and the coordinates of any point in the image.

We thus have $\overline{\mathbb{F}}_p \models \varphi_{n,d}$, where $\overline{\mathbb{F}}_p$ is an algebraic closure of \mathbb{F}_p . By completeness, $ACF_p \models \varphi_{n,d}$ for every prime p and by exercise (f), $ACF_0 \models \varphi_{n,d}$. Since in particular $\mathbb{C} \models ACF_0$, we have $\mathbb{C} \models \varphi_{n,d}$ for all n and d, hence injectivity implies surjectivity for any polynomial map $\mathbb{C}^n \to \mathbb{C}^n$.