Solutions: Sheet 3

Exercise 1

Let $\mathcal{L}=(+,-, \cdot, 0,1)$ be the language of rings, and let T be the \mathcal{L}-theory of finite fields, namely, the theory whose sentences are those \mathcal{L}-sentences ϕ such that $E \models \phi$ for all finite fields E.
(a) Show that T has models of characteristic 0 , and infinite models of characteristic p for any prime number p.

Solution:

For a model of characteristic 0 we can choose a non-principal ultrafilter on the prime numbers and use the ultraproduct $C=\prod_{\mathcal{F}} \mathbb{F}_{p}$ over the finite fields \mathbb{F}_{p}. Since all sentences in T are satisfied in all finite fields \mathbb{F}_{p}, and $\emptyset \notin \mathcal{F}$, by Los theorem, $C \models T$.

For characteristic p we can choose finite fields of order p^{n} of characteristic p and a non-principal ultrafilter on the natural numbers. By the same argument as above the ultraproduct is a model of T and the ultraproduct is infinite as it contains subfields of size p^{n} for increasing n.
(b) Show that any model of T is a perfect field (i.e., it is either of characteristic 0 , or the Frobenius morphism $x \mapsto x^{p}$ is surjective).

Solution:

We first note that for finite fields of characteristic p, the Frobenius map $x \mapsto x^{p}$ is a homomorphism (this can be seen by binomial-expansion). In finite fields of characteristic p, the Frobenius homomorphism has trivial kernel (since otherwise we there would be zero-divisors) and hence is injective. An injective map from a finite set to itself is also surjective, hence the \mathcal{L}-sentences

$$
\varphi_{p}=\underbrace{1+1+\ldots+1}_{p-\text { times }}=0 \rightarrow \forall y \exists x, \underbrace{x \cdot x \cdots x}_{p-\text { times }}=y
$$

holds in every finite field, hence also holds in every model of T. If the characteristic of a model $\mathcal{M} \models T$ is $p \neq 0$, then $\mathcal{M} \models \varphi_{p}$ and hence the Frobenius-map is surjective.
(c) Let K be a field. Show that for every integer $n \geq 1$, there exists a formula $\phi_{n}\left(v_{0}, \ldots, v_{n-1}\right)$ such that that $K \models \phi_{n}\left(a_{0}, \ldots, a_{n-1}\right)$ if and only if the polynomial

$$
X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}=0
$$

is irreducible.

Solution:

A polynomial $f(X)=\sum v_{i} X^{i}$ is irreducible iff for any polynomials $h, g, h(X) \cdot g(X)=f(X)$ implies that h or g are constant polynomials.

$$
\begin{aligned}
\phi_{n}\left(v_{0}, \ldots, v_{n-1}\right)= & \forall b_{0}, \ldots, b_{n}, c_{0}, \ldots, c_{n}, \\
& \left(\forall x,\left(\sum_{i=0}^{n} b_{i} x^{i}\right) \cdot\left(\sum_{i=0}^{n} c_{i} x^{i}\right)=\sum_{i=0}^{n} v_{i} x^{i}\right) \rightarrow \\
& \bigwedge_{i=1}^{n} b_{i}=0 \vee \bigwedge_{i=1}^{n} c_{i}=0
\end{aligned}
$$

(d) Show that if K is a model of T, then K is not algebraically closed, and in fact admits for any $n \geq 1$ at least one extension of degree n in an algebraic closure \bar{K} of K.

Solution:

Finite fields are not algebraically closed, so there exists an irreducible polynomial. In fact for every n, there exists an irreducible polynomial of degree n This can be formulated as an \mathcal{L}-sentence

$$
\exists v_{0}, \ldots, v_{n-1}, \phi_{n}\left(v_{0}, \ldots, v_{n-1}\right)
$$

and hence also holds in any model of T. Hence no model of T is algebraically closed.
(e) Show that there exist formulas $\pi_{n}(v, a, b, c)$ (resp. $\mu_{n}(v, a, b, c)$), where for $I=\{0,1, \ldots, n-1\}, v=\left(v_{i}\right)_{i \in I}, a=\left(a_{i}\right)_{i \in I}, b=\left(b_{i}\right)_{i \in I}$ and $c=\left(c_{i}\right)_{i \in I}$ are variables, such that if K is a model of T and $v, a, b, c \in K^{n}$, then $K \models \pi_{n}(v, a, b, c)$ if and only if

$$
\sum_{i=0}^{n-1} a_{i} \alpha^{i}+\sum_{i=0}^{n-1} b_{i} \alpha^{i}=\sum_{i=0}^{n-1} c_{i} \alpha^{i}
$$

resp. $K \models \mu_{n}(v, a, b, c)$ if and only if

$$
\left(\sum_{i=0}^{n-1} a_{i} \alpha^{i}\right) \cdot\left(\sum_{i=0}^{n-1} b_{i} \alpha^{i}\right)=\sum_{i=0}^{n-1} c_{i} \alpha^{i}
$$

where α is the class of X in the ring

$$
K[X] /\left(v_{0}+v_{1} X+\cdots+v_{n-1} X^{n-1}+X^{n}\right) .
$$

Hint: multiplication by α can be expressed as a matrix acting on the vectorspace $K_{n}[X]$.

Solution:

The elements of $K[X] / f(X)$ can be expressed as $a=\sum_{i=0}^{n-1} a_{i} \alpha^{i}$, where α is the class of X in $K[X] / f(X)$ and $f(X)=\sum v_{i} X^{i}$. The sum of two such elements coincides with the sum in $K[X] / f(X)$ viewed as a K-vectorspace. Hence

$$
\pi_{n}(v, a, b, c)=\bigwedge_{i=0}^{n-1} a_{i}+b_{i}=c_{i}
$$

is an \mathcal{L}-formula describing the addition. The multiplication is more complicated, as for instance

$$
\alpha^{n-1} \cdot \alpha^{n-1}=\alpha^{2 n-2}=\alpha^{n} \alpha^{n-2}=\left(-\sum_{i=0}^{n-1} v_{i} \alpha^{i}\right) \cdot \alpha^{n-2}=\ldots
$$

is not straightforward to calculate. The trick is to see multiplication by α as a matrix-multiplication on the vectorspace $K[X] / f(X)$. In facht we have
$\alpha \cdot a=b \quad \Longleftrightarrow\left(\begin{array}{cccccc}0 & & & & & \\ 1 & 0 & & & & -v_{0} \\ & 1 & \ddots & & & \\ & & \ddots & & & \\ & & & 1 & 0 & -v_{n-2} \\ & & & & 1 & -v_{n-1}\end{array}\right)\left(\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right)=\left(\begin{array}{c}b_{0} \\ b_{1} \\ \vdots \\ b_{n-1}\end{array}\right)$
and the equation for $\mu_{n}(v, a, b, c)$ becomes a system of linear equations which can be expressed in a \mathcal{L}-formula, but becomes quite complicated.
(f) Show that there is a \mathcal{L}-formula $\theta_{n}(w, v, a, b)$ expressing that $f(a)=b \in$ $K[X] / g(X)$, where

$$
f(X)=\sum_{i=0}^{n} v_{i} X^{i}, \quad g(X)=\sum_{i=0}^{n} w_{i} X^{i}
$$

are two monic polynomials of degree n.

Solution:

We write

$$
a=\sum_{i=0}^{n-1} a_{i} \alpha^{i} \quad \text { and } \quad b=\sum_{i=0}^{n-1} b_{i} \alpha^{i}
$$

where α is the class of X in $K[X] / g(X)$. We introduce new variables $a^{\ell}=\left(\left(a^{\ell}\right)_{0},\left(a^{\ell}\right)_{1}, \ldots,\left(a^{\ell}\right)_{n-1}\right)$ for $0 \leq \ell \leq n$ for the powers of a

$$
a^{\ell}=\sum_{i=0}^{n-1}\left(a^{\ell}\right)_{i} \alpha^{i} \in K[X] / g(X)
$$

Using (e) we can formulate this as a \mathcal{L}-formula by writing

$$
\begin{aligned}
\theta_{n, 1}\left(w, a, a^{0}, \ldots, a^{n}\right)= & \left(a^{0}\right)_{0}=1 \wedge \bigwedge_{i=1}^{n-1}\left(a^{0}\right)_{i}=0 \wedge \bigwedge_{i=0}^{n-1}\left(a^{1}\right)_{i}=a_{i} \\
& \wedge \bigwedge_{\ell=2}^{n} \mu_{n}\left(w, a, a^{\ell-1}, a^{\ell}\right)
\end{aligned}
$$

Next we introduce new elements $c^{\ell}=\left(\left(c^{\ell}\right)_{0},\left(c^{\ell}\right)_{1}, \ldots,\left(c^{\ell}\right)_{n-1}\right)$ for $0 \leq \ell \leq n$ such that

$$
c^{\ell}=\sum_{i=0}^{\ell} v_{i} a^{i} \in K[X] / g(X)
$$

which we can write as a \mathcal{L}-sentence by

$$
\begin{aligned}
& \theta_{n, 2}\left(w, v, a, a^{0}, \ldots, a^{n}, c^{0}, \ldots, c^{n}\right)= \\
&\left(c^{0}\right)_{0}=v_{0} \wedge \bigwedge_{i=1}^{n}\left(c^{0}\right)_{i}=0 \wedge \\
& \bigwedge_{\ell=1}^{n} \pi_{n}\left(w, c^{\ell-1},\left(v_{\ell} \cdot\left(a^{\ell}\right)_{0}, v_{\ell} \cdot\left(a^{\ell}\right)_{1}, \ldots, v_{\ell} \cdot\left(a^{\ell}\right)_{n}\right), c^{\ell}\right)
\end{aligned}
$$

The statement $f(a)=b$ can be described as an \mathcal{L}-sentence

$$
\begin{aligned}
\theta_{n}(w, v, a, b)= & \exists\left(a^{0}\right)_{0}, \ldots,\left(a^{n}\right)_{n-1},\left(c^{0}\right)_{0}, \ldots,\left(c^{n}\right)_{n-1}, \\
& \theta_{n, 1}\left(w, a, a^{0}, \ldots, a^{n}\right) \wedge \theta_{n, 2}\left(w, v, a, a^{0}, \ldots, a^{n}, c^{0}, \ldots, c^{n}\right) \wedge \\
& \bigwedge_{i=0}^{n-1}\left(c^{n}\right)_{i}=b_{i} .
\end{aligned}
$$

(g) Let K be a model of T and $f \in K[X]$ a monic degree n polynomial. Show that if f is irreducible, then any root of f generates its splitting field $K[X] / f(X)$. (This statement holds for finite fields.)

Solution:

We first express the following statement as an \mathcal{L}-sentence: any root $a \in$
$K[X] / f(X)$ of f generates n distinct roots $b^{1}, \ldots, b^{n} \in K[X] / f(X)$.

$$
\begin{aligned}
\theta_{n, 3}(v)= & \forall a_{0}, \ldots, a_{n-1}, \theta_{n}(v, v, a, 0) \wedge \\
& \exists\left(b^{1}\right)_{0}, \ldots,\left(b^{n}\right)_{n-1}, \bigwedge_{\ell=1}^{n} \theta_{n}\left(v, v, b^{\ell}, 0\right) \wedge \\
& \bigwedge_{k \neq \ell=1}^{n} \bigvee_{i=0}^{n-1}\left(b^{k}\right)_{i} \neq\left(b^{\ell}\right)_{i} \wedge \\
& \bigwedge_{\ell=1}^{n} \exists c_{0}, \ldots, c_{n-1}, \theta_{n}\left(v,\left(c_{0}, \ldots, c_{n-1}, 0\right), a, b^{\ell}\right) .
\end{aligned}
$$

If $\theta_{n, 3}$ holds, then it follows that the whole splitting field $K[X] / f(X)$ is generated by a. Finally we can express the statement, if a monic degree n polynomial $f \in K[X]$ is irreducible, then any root of f generates its splitting field $K[X] / f(X)$ by

$$
\theta_{n, 4}=\forall v_{0}, \ldots, v_{n},\left(v_{n}=1 \wedge \phi_{n}(v)\right) \rightarrow \theta_{n, 3}(v),
$$

where we used ϕ_{n} from (c) to express irreducibility.
Since this statement holds for all finite fields, it holds for K.
(h) Deduce that if K is a model of T and \bar{K} is an algebraic closure of K, then for any integer $n \geq 1$, the field K has a unique extension of degree n in \bar{K}. (This statement holds for finite fields.)
Hint: using the previous questions, show how to express, using the language of rings, the fact that if we have two irreducible polynomials f and g of degree n, then the roots of f are in the field generated by the roots of g.

Solution:

We want to write an \mathcal{L}-sentence ψ_{n} to formalize that if $f, g \in K[X]$ are irreducible monic polynomials of degree n, then there is an element $b \in K[X] / g(X)$ such that $f(b)=0 \in K[X] / g(X)$. We then note that ψ_{n} holds for all finite fields, hence also for K. By $K \models \psi_{n}$, there is a root b of f in the field $K[X] / g(X)$ and hence by $(\mathrm{g}), K[X] / f(X) \subseteq$ $K[X] / g(X)$. Clearly we can switch f and g to get equality.

It remains to formalize ψ_{n} :

$$
\begin{aligned}
\psi_{n}= & \forall v_{0}, \ldots, v_{n}, w_{0}, \ldots, w_{n},\left(v_{n}=1 \wedge w_{n}=1 \wedge \phi_{n}(v) \wedge \phi_{n}(w)\right) \rightarrow \\
& \exists b_{0}, \ldots, b_{n-1}, \theta_{n}(w, v, b, 0) .
\end{aligned}
$$

Exercise 2

(a) Following the methods seen in class for real-closed fields, prove that the theory ACF of algebraically closed fields has q.e. in the language of rings.

Solution:

In Chapter IV, section 2 a model theoretic criterion for having quantifier elimination was given. It thus suffices to show the following:
Let $\mathcal{M}, \mathcal{N} \models A C F$ be models of $A C F, \mathcal{A} \subseteq \mathcal{M} \cap \mathcal{N}$ be a substructure and

$$
\varphi(\underline{\mathrm{x}})=\exists y, \psi(\underline{\mathrm{x}}, y)
$$

where $\underline{\mathrm{x}}=\left(x_{1}, \ldots, x_{n}\right)$ and $\psi(\underline{\mathrm{x}}, y)$ is a quantifier-free formula. Let $\underline{\mathrm{a}}=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}^{n}$ such that $\mathcal{M} \models \varphi(\underline{\mathrm{a}})$. Then we have to prove that also $\mathcal{N} \models \varphi(\underline{a})$.

Since there are no relations in the language of rings, we may assume that ψ is of the form

$$
\psi(\underline{\mathrm{x}}, y)=\bigvee_{i=1}^{n_{i}} \bigwedge_{j=1}^{n_{j}} t_{i j}(\underline{\mathrm{x}}, y)
$$

where the terms $t_{i j}$ are either $p_{i j}(\underline{\mathrm{x}}, y)=0$ or $\neg q_{i j}(\underline{\mathrm{x}}, y)=0$ for polynomials $p_{i j}, q_{i j} \in \mathbb{Q}[\underline{\mathbf{x}}, y]$. Since $\mathcal{M} \models \varphi(\underline{\mathbf{a}})$ holds, let $b \in \mathcal{M}$ such that $\mathcal{M} \vDash \psi(\underline{\mathrm{a}}, b)$. So there is an i, such that

$$
\mathcal{M} \models \bigwedge_{j=1}^{k} p_{i j}(\underline{\mathrm{a}}, b)=0 \wedge \bigwedge_{j=k+1}^{n_{j}} \neg q_{i j}(\underline{\mathrm{a}}, b)=0
$$

If there is a term $t_{i j}$ with $j \leq k$ that has $p_{i j}(\underline{x}, y) \not \equiv 0$, then b is algebraic over \mathcal{A}. Since \mathcal{N} is algebraically closed, $b \in \mathcal{N}$ and $\mathcal{N} \models$ $\psi(\underline{a}, b)$. Thus $\mathcal{N} \models \varphi(\underline{a})$.

If all the polynomials $p_{i j}(\underline{x}, y) \equiv 0$, then

$$
\bigwedge_{j=k+1}^{n_{j}} q(\underline{\mathrm{a}}, y) \neq 0
$$

has only finitely many solutions y in the infinite field \mathcal{N}, so taking any one of these solutions c will give us $\mathcal{N} \models \psi(\underline{\mathbf{a}}, c)$ and hence $\mathcal{N} \models \varphi(\underline{\mathrm{a}})$.
(b) Show that if $F_{1} \subset F_{2}$ are algebraically closed, then $F_{2} \equiv F_{1}$ (i.e., they are elementarily equivalent).

Solution:

Let φ be an \mathcal{L}-sentence. with $F_{1} \models \varphi$. Then we know by quantifier elimination that φ is equivalent (modulo $A C F$) to a quantifier-free \mathcal{L}-sentence

$$
\psi=\bigvee_{i} \bigwedge_{j} t_{i j}
$$

where $t_{i j}$ are terms that are (in)equalities of polynomials of the constant symbols 0 or 1 . Since $F_{1} \models A C F$, we have $F_{1} \models \psi$. Since
$F_{1} \subseteq F_{2}$, they have the same characteristic p and there is a primefield \mathbb{F}_{p} or $\mathbb{F}_{0}:=\mathbb{Q}$ contained in F_{1}. Thus ψ is really just a statement about (in)equalities of elements in the prime field. Such statements are true in F_{1} if and only they are true in the prime field. We get

$$
F_{1} \models \varphi \Longleftrightarrow F_{1} \models \psi \Longleftrightarrow \mathbb{F}_{p} \models \psi \Longleftrightarrow F_{2} \models \psi \Longleftrightarrow F_{2} \models \varphi
$$

This means F_{1} and F_{2} are elementarily equivalent.
(c) Let p be a prime number or zero, and ACF_{p} the theory of algebraically closed fields of characteristic p. Show that the theory ACF_{p} is complete (i.e., for any sentence ϕ in the language of rings, either $\mathrm{ACF}_{p} \models \phi$ or $\mathrm{ACF}_{p}=\neg \phi$).

Solution:

Let ϕ be a sentence. By the argument in (b), $F \models \phi$ if and only if $\mathbb{F}_{p} \models \phi$, as long as $F \models A C F_{p}$. So if $\mathbb{F}_{p} \models \phi$, then $F \models \phi$ for all $F \models A C F_{p}$, i.e. $A C F_{p} \models \phi$. Otherwise $\mathbb{F}_{p} \models \neg \phi$, then $F \models \neg \phi$ for all $F \models A C F_{p}$, i.e. $A C F_{p} \models \neg \phi$. This shows $A C F_{p}$ is complete.
(d) Let F be an algebraically closed field. Show that definable subsets of F are either finite or have finite complement.

Solution:

Consider the definable subset $\varphi(F)=\{a \in F: F \models \varphi(a)\}$. By quantifier elimination, $\varphi(F)=\psi(F)$ for a quantifier-free formula $\psi(x)$ with one free variable x. As in (a) we may assume

$$
\begin{aligned}
\psi(x) & =\bigvee_{i} \psi_{i}(x) \quad \text { with } \\
\psi_{i}(x) & =\bigwedge_{j=1}^{k} p_{i j}(x)=0 \wedge \bigwedge_{j=k+1}^{n_{j}} \neg q_{i j}(x)=0
\end{aligned}
$$

For every i, if there is a $j \leq n_{j}$ with $p_{i j} \not \equiv 0$, then $\psi_{i}(F)$ is finite, since it consists of at most $\operatorname{deg} p_{i j}$ many solutions to the polynomial $p_{i j}$. If for all $i, p_{i j} \equiv 0$, then $\psi_{i}(F)$ is cofinite $\left(F \backslash \psi_{i}(F)\right.$ is finite), since only for finitely many $a \in F, q_{i j}(a)=0$. We see that

$$
\psi(F)=\bigcup_{i} \psi_{i}(F)
$$

is a union of finitely many finite or cofinite sets and hence is also finite or cofinite.
(e) Let F be an algebraically closed field, $m \geq 0$ an integer and $P \subset F\left[X_{1}, \ldots, X_{m}\right]$ a prime ideal. Show that there exists $\left(x_{1}, \ldots, x_{m}\right) \in F^{m}$ such that $f(x)=0$ for all $f \in P$. This is known as Hilbert's Nullstellensatz.

Hint: use Hilbert's Basis-Satz to reduce to finitely many equations to be able to find an x with this property in some algebraically closed extension of F.

Solution:

Hilbert's Basis-Satz states that every ideal in a polynomial ring is finitely generated. Let thus f_{1}, \ldots, f_{n} be generators of the ideal P. Since P is a prime ideal, $F\left[X_{1}, \ldots, X_{m}\right] / P$ is an integral domain and we can take an algebraic closure \bar{F} of its field of fractions $\operatorname{Frac}\left(F\left[X_{1}, \ldots, X_{m}\right] / P\right)$. We have an inclusion $F \subseteq \bar{F}$ of algebraically closed fields and thus by (b) elementary equivalence. Consider the sentence

$$
\varphi=\exists x_{1}, \ldots x_{m} \bigwedge_{i=1}^{n} f_{i}\left(x_{1}, \ldots, x_{m}\right)=0
$$

which holds in \bar{F}, since we can consider the elements $x_{i}=\left[X_{i}\right]$. By elementary equivalence, $\bar{F} \models \varphi$ implies $F \models \varphi$. Since $P=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ there are $a_{1}, \ldots, a_{m} \in F$ such that $f\left(a_{1}, \ldots, a_{m}\right)=0$ for all $f \in P$.
(f) Let ϕ be a sentence in the language of rings. Show that the following properties are equivalent:
(a) $A C F_{0}=\phi$
(b) $A C F_{p} \models \phi$ for all primes p large enough (depending on ϕ)
(c) $A C F_{p} \models \phi$ for all primes p in an infinite set (depending on ϕ)

Hint: Use compactness and completeness.

Solution:

(a) \Longrightarrow (b), We have $A C F_{0} \models \phi$. By quantifier elimination, let

$$
\psi=\bigvee_{i} \bigwedge_{j}(\neg) z_{i j}=0
$$

with $z_{i j} \in \mathbb{Z}$ be an equivalent formula $(\bmod A C F)$. Choose a prime $p>\max \left\{\left|z_{i j}\right|\right\}$. Then we have for all i, j that $\mathbb{Q} \models z_{i j}=0$ if and only if $\mathbb{F}_{p}=z_{i j}=0$. Thus

$$
\begin{aligned}
A C F_{0} \models \phi & \Longleftrightarrow A C F_{0} \models \psi \Longleftrightarrow \mathbb{Q} \models \psi \Longleftrightarrow \mathbb{F}_{p} \models \psi \\
& \Longleftrightarrow A C F_{p} \models \psi \Longleftrightarrow A C F_{p} \models \phi .
\end{aligned}
$$

$(\mathrm{b}) \Longrightarrow(\mathrm{c})$, This is immediate. The infinite set is the set of all primes that are large enough in (b).
(c) \Longrightarrow (a), Let p_{1}, p_{2}, \ldots be such that $A C F_{p_{i}} \models \phi$ for $i=1,2, \ldots$. Consider the \mathcal{L}-sentence

$$
\varphi_{n}=(\neg \underbrace{1+1+\ldots+1}_{n-\text { times }}=0) \wedge \phi
$$

and the \mathcal{L}-theory $T=A C F \cup\left\{\varphi_{n}: n=1,2, \ldots\right\}$. We show that T is finitely satisfiable: let $\Delta \subseteq T$ and let i be such that $p_{i}>$ $\max n: \varphi_{n} \in \Delta$. Then we have $\overline{\bar{F}}_{p_{i}} \vDash \Delta$, since $A C F_{p_{i}} \vDash \phi$ and $A C F_{p_{i}} \models \neg \underbrace{1+1+\ldots+1}_{n-\text { times }}=0$ for all $n<p_{i}$.
By the compactness theorem there is a model $\mathcal{M} \models T$. This model \mathcal{M} is a field and has to have characteristic 0 , since it cannot have finite characteristic by $\mathcal{M} \models \varphi_{n}$ for all $n \in \mathbb{N}$. By completeness \mathcal{M} is elementarily equivalent to every model of $A C F_{0}$ and hence $A C F_{0} \models$ ϕ.
(g) Deduce from the previous question another solution of Question 9 of Exercise 3 of Sheet 2 : every injective map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by polynomials is surjective.

Solution:

We write a finite set of polynomials in n variables and degree at most d in multiindex notation as $f_{i}(\underline{\mathrm{X}})=\sum_{\alpha} a_{\alpha}^{i} \underline{\mathrm{X}}^{\alpha}$. We can write that injectivity implies surjectivity as a first order formula in the following way:

$$
\begin{aligned}
\varphi_{n, d}= & \forall a_{\alpha}^{i}\left(\forall \underline{\mathrm{x}}, \underline{\mathrm{y}}\left(\bigwedge_{i=1}^{n} \sum_{\alpha} a_{\alpha}^{i}(\underline{\mathrm{x}})^{\alpha}=\sum_{\alpha} a_{\alpha}^{i}(\mathrm{y})^{\alpha}\right) \rightarrow \underline{\mathrm{x}}=\underline{\mathrm{y}}\right) \\
& \rightarrow\left(\forall \underline{\mathrm{y}}=\left(y_{1}, \ldots, y_{n}\right) \exists \underline{\mathrm{x}}, \bigwedge_{i=1}^{n} \sum_{\alpha} a_{\alpha}^{i}(\underline{\mathrm{x}})^{\alpha}=y_{i}\right)
\end{aligned}
$$

For all n, d, the sentence $\phi_{n, d}$ holds in finite fields (just because every injective map from a finite set to itself is surjective). As in Question 1 of Exercise 3 of Sheet 2, $\phi_{n, d}$ also holds in the algebraic closures of finite fields, since we can take the finite extensions of \mathbb{F}_{p} by the elements a_{α}^{i} and the coordinates of any point in the image.
We thus have $\overline{\mathbb{F}}_{p} \models \varphi_{n, d}$, where $\overline{\mathbb{F}}_{p}$ is an algebraic closure of \mathbb{F}_{p}. By completeness, $A C F_{p} \models \varphi_{n, d}$ for every prime p and by exercise (f), $A C F_{0} \models \varphi_{n, d}$. Since in particular $\mathbb{C} \models A C F_{0}$, we have $\mathbb{C} \models \varphi_{n, d}$ for all n and d, hence injectivity implies surjectivity for any polynomial map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

