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Solutions to Sheet 4

Exercise 1
Let M = X2Y 2(X2 + Y 2 − 3) + 1 ∈ R[X,Y ]. We saw in class, that every non-
negative polynomial is a sum of squares of rational functions (Hilbert’s 17th
problem). In this exercise, we will see that M is a non-negative polynomial that
is not a sum of squares of polynomials.

(a) Show that M(x, y) ≥ 0 for all (x, y) ∈ R2.

Hint: Use the arithmetic-geometric mean inequality on three variables.

Solution:
The arithmetic-geometric mean inequality for three variables states
that

3
√
abc ≤ a + b + c

3

and gives

X4Y 2 + X2Y 4 + 1 ≥ 3
3
√
X6Y 6 = 3X2Y 2,

what we have to prove.

(b) Show that if m ≥ 1 and (f1, . . . , fm) are non-zero elements of R[X,Y ],
then

deg(f2
1 + · · ·+ f2

m) = 2 max(deg(fi)).

Solution:
Since deg(f2) = 2 deg(f), it is clear that deg(f2

1 + · · · + f2
m) ≤

max(deg(f2
i )) = 2 max(deg(fi)). On the other hand we can be su-

re that no cancellation happens in the sum f2
1 + · · · + f2

m, since the
maximal degree terms all have positive coefficients (since the fi are
squared). Thus equality holds.

(c) Show that there is no finite family (pi)i∈I in R[X,Y ] such that M =
∑

p2i .

Hint: Assume that there is such a family; show first that deg(pi) ≤ 3, then
evaluate with X = 0 and Y = 0 to see that each pi would have to be of
the form a + bXY for some a ∈ R and some b ∈ R[X,Y ] with degree at
most 1; compute then the coefficient of (XY )2.

Solution:
Let us assume that M(X,Y ) =

∑
i pi(X,Y )2. Since deg(M) = 6, by

(b),
6 = deg(M) = 2 max(deg(pi)),
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we may conclude that deg(pi) ≤ 3 for all i. Let pi be given by

pi(X,Y ) =
∑

k+`≤3

aik`X
kY `

and note that when we plug in X = 0, we get

M(0, Y ) = 1 =
∑
i

pi(0, Y )2 =
∑
i

(
ai00 + ai01Y + ai02Y

2 + a03Y
3
)2

,

hence ai0` = 0 for all ` ≥ 1. Similarly, we can plug in Y = 0 to get
aik0 = 0 for k ≥ 1. Thus the pi have to be of the form

pi(X,Y ) = ai00 + ai11XY + ai21X
2Y + ai12XY 2

and by multiplying out, we notice that the coefficient in front of X2Y 2

in p2i is (ai11)2. Hence

−3X2Y 2 =
∑
i

(ai11)2,

but the lefthandside is positive. This is a contradiction and thus M
cannot be written as a sum of squares of polynomials.

Exercise 2
Let L be a language with a binary relation symbol ≤.

(a) Let M be an o-minimal L-structure. Show that a non-empty subset X ⊂
M with X 6= M is definable if and only if the boundary ∂X = X \ X̊ of X
is finite and non-empty.

Solution:
If X ⊂M is definable, then the boundary is finite, by Lemma V.1(2)
of the lecture. Since X 6= M , ∂M 6= ∅.
If the boundary is finite, let −∞ = a0 ≤ a1 ≤ . . . ≤ an = ∞ such
that ∂X = {a1, . . . , an−1}. We can now define the following formula

ϕ(x) =
∨

aj∈X
x = aj ∨

∨
]aj ,aj+1[⊆X

aj < x ∧ x < aj+1

and by the following Lemma we know that this is a valid description
of X.

Lemma 0.1. For every 0 ≤ j ≤ n − 1, the open interval ]aj , aj+1[ is
contained in X, or disjoint from X.

Proof. Consider ]aj , aj+1[⊆ M \ ∂X = X̊ ∪ (M \X). Define the two
open sets A =]aj , aj+1[∩X̊, B =]aj , aj+1[∩(M \ X). Since A ∪ B =
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]aj , aj+1[ and ]aj , aj+1[ is d-connected, we have A = ∅ or B = ∅. This
shows the Lemma.

(b) Let M be an L-structure in which ≤ is interpreted as a total order which
is dense without endpoints. Show that M is o-minimal if and only if every
definable non-empty subset X ⊂ M with X 6= M has finite non-empty
boundary ∂X = X\X̊, and for any x < y in ∂X∪{−∞,+∞}, if ]x, y[∩ ∂X
is empty, then either ]x, y[⊂ X or ]x, y[∩X = ∅.

Solution:
Assume first that M is o-minimal. By (a) X has finite non-empty
boundary. Let x < y for x, y ∈ ∂X∪{−∞,∞}, such that ]x, y[∩∂X =
∅. Interpreting this in the language of the solution to (a), there is a j,
such that x = aj and y = aj+1. By the Lemma in the solution to (a),
]x, y[⊆ X or ]x, y[∩X = ∅.
Now assume the second part. To show o-minimality, we already know
that (M,≤) forms a dense linear order without endpoints and hence
only have to show that definable subsets of M are finite unions of
points and open intervals. So let X be a definable subset of M . If
X = ∅ or X = M , then it is clearly a finite union of points and open
intervals, so we may assume that X has finite non-empty boundary.
Let −∞ = a0 ≤ a1 ≤ . . . ≤ an =∞ as in (a). By the assumption, we
know that ]aj , aj+1[ is either fully contained in X or disjoint from X.
Hence X is the following finite union of points and open intervals

X =
⋃

p∈∂X∩X

{p} ∪
⋃

]aj ,aj+1[⊆X

]aj , aj+1[ .

Exercise 3
Let L0 = (·, e,≤) be the language of ordered groups. Let M be an o-minimal
L0-structure which is a model of the theory of ordered groups. (Which means
that the order has the property that x ≤ y implies xz ≤ yz and zx ≤ zy for
all z ∈M .)

(a) Let H ⊂M be a definable subgroup of (M, ·). Show that H is an interval,
i.e., if e < h for some h ∈ H, then [e, h] ⊂ H.

Hint: By contradiction, show that if this is false, then there is an infinite
“discrete” definable set.

Solution:
Assume for contradiction that e, h ∈ H, but g ∈M\H with e ≤ g ≤ h.
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Since e ≤ h, h ≤ h2. Since e ≤ g, h ≤ gh. Since g ≤ h, gh ≤ h2. Now
h2 ∈ H and gh /∈ H, since otherwise ghh−1 ∈ H. Similarly we get

e ≤ g ≤ h ≤ gh ≤ h2 ≤ gh2 ≤ h3 ≤ gh3 ≤ . . .

Since M is o-minimal and H is a definable subgroup of M , H has
to be a finite union of points and open intervals, but by the above
sequence, we see that there are infinitely many elements ghk ∈M \H
between the hk ∈ H, which is a contradiction.

(b) Show that the only definable subgroups of (M, ·) are {e} and M .

Solution:
Let H 6= {e} be a definable subgroup. By (a), H is open (Every
element h ∈ H is contained in an open interval (h−2, h2) ⊆ H). We
claim that M \H is open too:

Let e ≤ k ∈M \H. Since e ≤ h, k ≤ hk and since h−1 ≤ e, h−1k ≤ k.
Both hk and h−1k are not in H and hence k ⊂]h−1k, hk[⊆M \H.

Since M is d-connected and H 6= ∅, M \ H has to be empty, hence
H = M .

(c) Deduce that (M, ·) is abelian and divisible, i.e. that for any y ∈M and n ≥
1 integer, there exists x ∈M such that xn = y.

Solution:
The definable subgroups CentM ({a}) = {g ∈M : aga−1 = g} for a ∈
M\{e} clearly contain a ∈ CentM ({a}), and by (b) CentM ({a}) = M .
Hence everything commutes with a and M is abelian.

For every n ≥ 2 we consider the definable subgroup

Γn = {y : ∃x : xn = y},

which is not {e}, since gn ∈ Γn for every g ∈M \{e}. By (b) Γn = M ,
and hence M is divisible.

Exercise 4
Let L = (+,−, ·, 0, 1,≤) be the language of ordered rings. LetM be an o-minimal
L-structure which is a model of the theory of ordered rings (not necessarily
commutative; this means that 0 < 1 in M , that (M,+) is an ordered abelian
group, and that the order has the property that whenever x ≤ y and z ≥ 0, also
xz ≤ yz). Hint: Use exercise 3.

(a) Show that for every x ∈M \ {0}, there is an inverse element y ∈M with
x · y = 1.
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Solution:
For x ∈ M \ {0}, we consider the definable subgroup x ·M = {t ∈
M : ∃y ∈ M : t = x · y} < (M,+). By exercise 3 (c), x ·M = M and
hence there is an inverse y ∈M with x · y = 1.

(b) Show that the positive elements of M form an ordered group with the
multiplication.

Solution:
Clearly, (M \{0}, ·) is a group. To see that Pos(M) = {x ∈M : x > 0}
is a group, we have to check that it is closed under multiplication and
taking inverses. Indeed when 0 ≤ y and z ≥ 0, then 0 = 0 · z ≤ y · z ∈
Pos(M) by the axioms of ordered rings. Moreover, if y ≥ 0, then also
y−1 ≥ 0, since otherwise 1 = zz−1 ≤ 0. The group Pos(M) is an
ordered group, since M is an ordered ring.

(c) Show that M is an ordered field.

Solution:
The ring M is a field, since it has an inverse by (a) and the multi-
plication is commutative by Exercise 3 (c) applied to the subgroup of
positive elements (and multiplying by (−1) the negative elements).

(d) Show that positive elements in M have a square root.

Solution:
This follows from Exercise 3(c) applied to the group of positive ele-
ments. A square root is the special case n = 2 of divisibility.

(e) Show that addition and multiplication are continuous on M2 (with the
order topology on M and the product of the order topology on M2).

Solution:
The open intervals form a basis of open sets in the topology on M .
Thus it suffices to show that the preimages of open intervals is open.
Consider the open set ]u, v[⊆M for u < v ∈M .

Given (a, b) ∈ +−1(]u, v[ ), we consider the open set

B = ]a + ∆−, a + ∆+[ × ]b + ∆−, b + ∆+[ ⊆M2 for

∆− =
u− a− b

2
< 0 and ∆+ =

v − a− b

2
> 0.
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Clearly (a, b) ∈ B. For all (x, y) ∈ B we have

u = a + b + 2∆− < x + y < a + b + 2∆+ = v

and hence +(B) ⊆ ]u, v[ , i.e. +−1(]u, v[ ) is open.

For the multiplication, we first restrict ourselves to the case u, v > 0,
we let (a, b) ∈ (·)−1(]u, v[ ), and in the case a, b > 0 consider the open
set

B = ]a ·∆−, a ·∆+[ × ]b ·∆−, b ·∆+[ ⊆M2 for

∆− =
√
u/(ab) < 1 and ∆+ =

√
v/(ab) > 1.

Again (a, b) ∈ B and for all (x, y) ∈ B we have

u = ab∆2
− < x · y < ab∆2

+ = v

and hence (·)(B) ⊆ ]u, v[ .

In the case a, b < 0, we have instead (a, b) ∈ −B and (·)(−B) =
(·)(B) ⊆ ]u, v[ . In both cases (·)−1(]u, v[ ) is open.

When u, v are not both positive we can do similar constructions.

(f) Show that for f ∈M [X], the polynomial function associated to f from M
to M is a definable continuous function.

Solution:
A polynomial is a conjunction of additions and multiplications, both
of which are continuous according to (e).

(g) Show that M is a real-closed field. Hint: Use the criterion that a field F
is real closed if and only if (1) for every a ∈ F , either a or −a is a square
and (2) every polynomial in F [X] of odd degree has a root in F .

Solution:
(1) Let a ∈M . By (d), |a| = max{a,−a} has a square root.

(2) Let f =
∑d

i=0 aiX
i ∈ M [X] be a polynomial of odd degree d.

We may assume without loss of generality that f is monic (otherwise
take f/(ad) instead of f). The goal is to find x, y ∈ M such that
f(x) < 0 < f(y) and to then use the intermediate value theorem for
for o-minimal structures.

We let y = maxi{d|ai|, 1}. If d|ai| < 1, for every i = 1, . . . , d− 1, then∣∣∣∣∣
d−1∑
i=0

aiy
i

∣∣∣∣∣ ≤
d−1∑
i=1

|ai| ≤ d ·max{|ai|} < 1 = y = yd
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so f(y) = yd+
∑

aiy
i > 0. If however there is a j, such that y = d|aj |,

then we have∣∣∣∣∣
d−1∑
i=0

aiy
i

∣∣∣∣∣ ≤
d−1∑
i=0

|ai|di|aj |d <

d−1∑
i=0

dd−1|aj |d = dd|aj |d = yd.

Thus f(y) = yd+
∑

aiy
i > 0. A similar calculation shows that x := −y

satisfies f(x) ≤ 0.

We now use the intermediate value theorem for o-minimal structures
to find a 0.
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