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Solutions to Sheet 4

Exercise 1

Let M = X?Y?(X%2+Y?-3)+1 € R[X,Y]. We saw in class, that every non-
negative polynomial is a sum of squares of rational functions (Hilbert’s 17th
problem). In this exercise, we will see that M is a non-negative polynomial that
is not a sum of squares of polynomials.

(a) Show that M (z,y) > 0 for all (z,y) € R*.

Hint: Use the arithmetic-geometric mean inequality on three variables.

Solution:
The arithmetic-geometric mean inequality for three variables states
that
Yape < 20T
- 3
and gives

X4Y? 4 X%y +1>3VX6Y6 = 3X%Y?,

what we have to prove.

(b) Show that if m > 1 and (f1,..., fm) are non-zero elements of R[X,Y],
then

deg(ff + -+ f7) = 2max(deg(f;)).

Solution:

Since deg(f?) = 2deg(f), it is clear that deg(fZ + --- + f2) <
max(deg(f?)) = 2max(deg(f;)). On the other hand we can be su-
re that no cancellation happens in the sum f? + --- + f2,, since the
maximal degree terms all have positive coefficients (since the f; are
squared). Thus equality holds.

(c) Show that there is no finite family (p;)ics in R[X, Y] such that M = p?2.

Hint: Assume that there is such a family; show first that deg(p;) < 3, then
evaluate with X = 0 and Y = 0 to see that each p; would have to be of
the form a + bXY for some a € R and some b € R[X,Y] with degree at
most 1; compute then the coefficient of (XY)2.

Solution:
Let us assume that M(X,Y) = >, p;(X,Y)? Since deg(M) = 6, by
(b),

6 = deg(M) = 2max(deg(p;)),
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we may conclude that deg(p;) < 3 for all i. Let p; be given by
(X, V)= ) a,X"Y*
k+£<3
and note that when we plug in X = 0, we get
MO,Y)=1=Y pi(0,Y)2 = (ahy +ahyY +ahY? +apsY?)”,
i i

hence af, = 0 for all £ > 1. Similarly, we can plug in Y = 0 to get
aty, =0 for k > 1. Thus the p; have to be of the form

pi(X,Y) = aby + ai, XY + ab, X2Y 4 iy XY?

and by multiplying out, we notice that the coefficient in front of X2Y?2
in p? is (a%;)?. Hence

—3X2Y2 = 3 (o),

but the lefthandside is positive. This is a contradiction and thus M
cannot be written as a sum of squares of polynomials.

Exercise 2
Let £ be a language with a binary relation symbol <.

(a) Let M be an o-minimal L-structure. Show that a non-empty subset X C
M with X # M is definable if and only if the boundary 0X = X \ X of X
is finite and non-empty.

Solution:

If X C M is definable, then the boundary is finite, by Lemma V.1(2)
of the lecture. Since X # M, OM # (.

If the boundary is finite, let —co = a9 < a1 < ... < a, = oo such
that 0X = {a1,...,an—1}. We can now define the following formula

plz) = \/x:aj\/ \/ a; < T AT < ajpq
a;€X laj,a; +1[CX

and by the following Lemma we know that this is a valid description
of X.

Lemma 0.1. For every 0 < j < n — 1, the open interval Ja;, a;+1[ is
contained in X, or disjoint from X.

Proof. Consider |aj,a;41[C M\ 0X = X U (M \ X). Define the two
open sets A =laj,a;41[NX, B =laj,a;+1[N(M \ X). Since AU B =
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laj,aj41[ and Ja;, a;41[ is d-connected, we have A = @) or B = (). This
shows the Lemma. O

(b) Let M be an L-structure in which < is interpreted as a total order which
is dense without endpoints. Show that M is o-minimal if and only if every
definable non-empty subset X C M with X # M has finite non-empty
boundary X = X\ X, and for any z < y in 9XU{—o0, +o0}, if |z, y[NOX
is empty, then either |z, y[C X or |z, y[NX = 0.

Solution:

Assume first that M is o-minimal. By (a) X has finite non-empty
boundary. Let z < y for z,y € 0XU{—00, 00}, such that Jz,y[NOX =
(). Interpreting this in the language of the solution to (a), there is a j,
such that = a; and y = a;4:. By the Lemma in the solution to (a),
Jz,y[C X or |z, y[NX = 0.

Now assume the second part. To show o-minimality, we already know
that (M, <) forms a dense linear order without endpoints and hence
only have to show that definable subsets of M are finite unions of
points and open intervals. So let X be a definable subset of M. If
X =0 or X = M, then it is clearly a finite union of points and open
intervals, so we may assume that X has finite non-empty boundary.
Let —co=ap <aj <...<a, =00 as in (a). By the assumption, we
know that Ja;j, a;41[ is either fully contained in X or disjoint from X.
Hence X is the following finite union of points and open intervals

x= U v U leamnl

peEIXNX laj,aj41[CX

Exercise 3

Let Lo = (,¢e,<) be the language of ordered groups. Let M be an o-minimal
Lo-structure which is a model of the theory of ordered groups. (Which means
that the order has the property that x < y implies 2z < yz and zz < zy for
all z € M.)

(a) Let H C M be a definable subgroup of (M, -). Show that H is an interval,
i.e., if e < h for some h € H, then [e,h] C H.

Hint: By contradiction, show that if this is false, then there is an infinite
“discrete” definable set.

Solution:
Assume for contradiction that e,h € H, but g € M\ H withe < g < h.
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Since e < h,h < h2. Since e < g, h < gh. Since g < h, gh < h?. Now
h? € H and gh ¢ H, since otherwise ghh~! € H. Similarly we get

e<g<h<gh<h><gh®><h’><gh®<..

Since M is o-minimal and H is a definable subgroup of M, H has
to be a finite union of points and open intervals, but by the above
sequence, we see that there are infinitely many elements gh* € M\ H
between the h¥ € H, which is a contradiction.

(b) Show that the only definable subgroups of (M, -) are {e} and M.

Solution:

Let H # {e} be a definable subgroup. By (a), H is open (Every
element h € H is contained in an open interval (h=2 h%) C H). We
claim that M \ H is open too:

Let e < ke M\ H. Since e < h, k < hk and since h='<e h 'k <k.
Both hk and h™'k are not in H and hence k C]Jh~'k,hk[C M \ H.

Since M is d-connected and H # (), M \ H has to be empty, hence
H=M.

(¢) Deduce that (M, ) is abelian and divisible, i.e. that for any y € M and n >
1 integer, there exists x € M such that 2™ = y.

Solution:

The definable subgroups Centys({a}) = {g € M: aga™! = g} for a €
M\ {e} clearly contain a € Centys({a}), and by (b) Centps({a}) = M.
Hence everything commutes with a and M is abelian.

For every n > 2 we consider the definable subgroup
I, ={y: Jz: 2" =y},

which is not {e}, since g™ € T, for every g € M\ {e}. By (b) ', = M,
and hence M is divisible.

Exercise 4

Let £ = (+,—,,0, 1, <) be the language of ordered rings. Let M be an o-minimal
L-structure which is a model of the theory of ordered rings (not necessarily
commutative; this means that 0 < 1 in M, that (M, +) is an ordered abelian
group, and that the order has the property that whenever x < y and z > 0, also
xz < yz). Hint: Use exercise 3.

(a) Show that for every x € M \ {0}, there is an inverse element y € M with
z-y=1.
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Solution:

For x € M \ {0}, we consider the definable subgroup = - M = {t €
M:3ye M:t==xz -y} < (M,+). By exercise 3 (¢), z- M = M and
hence there is an inverse y € M with -y = 1.

(b) Show that the positive elements of M form an ordered group with the
multiplication.

Solution:

Clearly, (M \ {0}, -) is a group. To see that Pos(M) = {x € M: = > 0}
is a group, we have to check that it is closed under multiplication and
taking inverses. Indeed when 0 <y and z > 0,then 0=0-2<y-z €
Pos(M) by the axioms of ordered rings. Moreover, if y > 0, then also
y~! > 0, since otherwise 1 = zz~! < 0. The group Pos(M) is an
ordered group, since M is an ordered ring.

(¢) Show that M is an ordered field.

Solution:

The ring M is a field, since it has an inverse by (a) and the multi-
plication is commutative by Exercise 3 (c) applied to the subgroup of
positive elements (and multiplying by (—1) the negative elements).

(d) Show that positive elements in M have a square root.

Solution:
This follows from Exercise 3(c) applied to the group of positive ele-
ments. A square root is the special case n = 2 of divisibility.

(e) Show that addition and multiplication are continuous on M? (with the
order topology on M and the product of the order topology on M?).

Solution:

The open intervals form a basis of open sets in the topology on M.
Thus it suffices to show that the preimages of open intervals is open.
Consider the open set Ju,v[C M for u < v € M.

Given (a,b) € +71(Ju,v[), we consider the open set

B=la+A ,a+A, [ x]b+A_b+A [ CM?* for

A_:U_Ta_b<0 and A+:U%t_b>0.
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Clearly (a,b) € B. For all (x,y) € B we have
u=a+b+2A_<zx4+y<a+b+2A; =0

and hence +(B) Clu,v[, i.e. +71(Ju,v[) is open.

For the multiplication, we first restrict ourselves to the case u,v > 0,
we let (a,b) € ()" (Ju,v[), and in the case a,b > 0 consider the open
set

B=la-A_,a-A [ x]b-A_,b-A [ CM? for
A_ =+/u/(ab) <1 and AL =+/v/(ab) > 1.
Again (a,b) € B and for all (z,y) € B we have
u:abA3<x-y<abA2+:v

and hence (+)(B) Clu,v].

In the case a,b < 0, we have instead (a,b) € —B and (-)(—B) =
(\)(B) Clu,v[. In both cases (-)~!(Ju,v[) is open.

When u, v are not both positive we can do similar constructions.

(f) Show that for f € M[X], the polynomial function associated to f from M
to M is a definable continuous function.

Solution:
A polynomial is a conjunction of additions and multiplications, both
of which are continuous according to (e).

(g) Show that M is a real-closed field. Hint: Use the criterion that a field F
is real closed if and only if (1) for every a € F, either a or —a is a square
and (2) every polynomial in F[X] of odd degree has a root in F.

Solution:

(1) Let a € M. By (d), |a| = max{a, —a} has a square root.

(2) Let f = Z?:o a;X* € M[X] be a polynomial of odd degree d.
We may assume without loss of generality that f is monic (otherwise
take f/(aq) instead of f). The goal is to find z,y € M such that
f(x) <0 < f(y) and to then use the intermediate value theorem for
for o-minimal structures.

We let y = max;{d|a;|,1}. If d|a;| < 1, for every i =1,...,d—1, then

d—1

Z aiyi
i=0

d—1
< Z|ai\ <d-max{|a;|} <1 =1y =y*
i=1
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so f(y) = y*+ a;y’ > 0. If however there is a j, such that y = d|a;|,
then we have

d—1
E ay’
i=0

Thus f(y) = y?¥+>_ a;y* > 0. A similar calculation shows that z := —y
satisfies f(z) <0.

‘We now use the intermediate value theorem for o-minimal structures
to find a 0.

d—1 d—1
< 5ttt < S a0 = ot =
=0 i=0




