Solutions to Sheet 4

Exercise 1

Let $M=X^{2} Y^{2}\left(X^{2}+Y^{2}-3\right)+1 \in \mathbb{R}[X, Y]$. We saw in class, that every nonnegative polynomial is a sum of squares of rational functions (Hilbert's 17th problem). In this exercise, we will see that M is a non-negative polynomial that is not a sum of squares of polynomials.
(a) Show that $M(x, y) \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$.

Hint: Use the arithmetic-geometric mean inequality on three variables.

Solution:

The arithmetic-geometric mean inequality for three variables states that

$$
\sqrt[3]{a b c} \leq \frac{a+b+c}{3}
$$

and gives

$$
X^{4} Y^{2}+X^{2} Y^{4}+1 \geq 3 \sqrt[3]{X^{6} Y^{6}}=3 X^{2} Y^{2}
$$

what we have to prove.
(b) Show that if $m \geq 1$ and $\left(f_{1}, \ldots, f_{m}\right)$ are non-zero elements of $\mathbb{R}[X, Y]$, then

$$
\operatorname{deg}\left(f_{1}^{2}+\cdots+f_{m}^{2}\right)=2 \max \left(\operatorname{deg}\left(f_{i}\right)\right)
$$

Solution:

Since $\operatorname{deg}\left(f^{2}\right)=2 \operatorname{deg}(f)$, it is clear that $\operatorname{deg}\left(f_{1}^{2}+\cdots+f_{m}^{2}\right) \leq$ $\max \left(\operatorname{deg}\left(f_{i}^{2}\right)\right)=2 \max \left(\operatorname{deg}\left(f_{i}\right)\right)$. On the other hand we can be sure that no cancellation happens in the sum $f_{1}^{2}+\cdots+f_{m}^{2}$, since the maximal degree terms all have positive coefficients (since the f_{i} are squared). Thus equality holds.
(c) Show that there is no finite family $\left(p_{i}\right)_{i \in I}$ in $\mathbb{R}[X, Y]$ such that $M=\sum p_{i}^{2}$.

Hint: Assume that there is such a family; show first that $\operatorname{deg}\left(p_{i}\right) \leq 3$, then evaluate with $X=0$ and $Y=0$ to see that each p_{i} would have to be of the form $a+b X Y$ for some $a \in \mathbb{R}$ and some $b \in \mathbb{R}[X, Y]$ with degree at most 1; compute then the coefficient of $(X Y)^{2}$.

Solution:

Let us assume that $M(X, Y)=\sum_{i} p_{i}(X, Y)^{2}$. Since $\operatorname{deg}(M)=6$, by (b),

$$
6=\operatorname{deg}(M)=2 \max \left(\operatorname{deg}\left(p_{i}\right)\right),
$$

we may conclude that $\operatorname{deg}\left(p_{i}\right) \leq 3$ for all i. Let p_{i} be given by

$$
p_{i}(X, Y)=\sum_{k+\ell \leq 3} a_{k \ell}^{i} X^{k} Y^{\ell}
$$

and note that when we plug in $X=0$, we get

$$
M(0, Y)=1=\sum_{i} p_{i}(0, Y)^{2}=\sum_{i}\left(a_{00}^{i}+a_{01}^{i} Y+a_{02}^{i} Y^{2}+a_{03} Y^{3}\right)^{2}
$$

hence $a_{0 \ell}^{i}=0$ for all $\ell \geq 1$. Similarly, we can plug in $Y=0$ to get $a_{k 0}^{i}=0$ for $k \geq 1$. Thus the p_{i} have to be of the form

$$
p_{i}(X, Y)=a_{00}^{i}+a_{11}^{i} X Y+a_{21}^{i} X^{2} Y+a_{12}^{i} X Y^{2}
$$

and by multiplying out, we notice that the coefficient in front of $X^{2} Y^{2}$ in p_{i}^{2} is $\left(a_{11}^{i}\right)^{2}$. Hence

$$
-3 X^{2} Y^{2}=\sum_{i}\left(a_{11}^{i}\right)^{2},
$$

but the lefthandside is positive. This is a contradiction and thus M cannot be written as a sum of squares of polynomials.

Exercise 2

Let \mathcal{L} be a language with a binary relation symbol \leq.
(a) Let M be an o-minimal \mathcal{L}-structure. Show that a non-empty subset $X \subset$ M with $X \neq M$ is definable if and only if the boundary $\partial X=\bar{X} \backslash \dot{X}$ of X is finite and non-empty.

Solution:

If $X \subset M$ is definable, then the boundary is finite, by Lemma V.1(2) of the lecture. Since $X \neq M, \partial M \neq \emptyset$.
If the boundary is finite, let $-\infty=a_{0} \leq a_{1} \leq \ldots \leq a_{n}=\infty$ such that $\partial X=\left\{a_{1}, \ldots, a_{n-1}\right\}$. We can now define the following formula

$$
\varphi(x)=\bigvee_{a_{j} \in X} x=a_{j} \vee \bigvee_{] a_{j}, a_{j}+1[\subseteq X} a_{j}<x \wedge x<a_{j+1}
$$

and by the following Lemma we know that this is a valid description of X.

Lemma 0.1. For every $0 \leq j \leq n-1$, the open interval $] a_{j}, a_{j+1}[$ is contained in X, or disjoint from X.

Proof. Consider $] a_{j}, a_{j+1}[\subseteq M \backslash \partial X=\stackrel{\circ}{X} \cup(M \backslash \bar{X})$. Define the two open sets $A=] a_{j}, a_{j+1}[\cap X, B=] a_{j}, a_{j+1}[\cap(M \backslash \bar{X})$. Since $A \cup B=$
$] a_{j}, a_{j+1}[$ and $] a_{j}, a_{j+1}[$ is d-connected, we have $A=\emptyset$ or $B=\emptyset$. This shows the Lemma.
(b) Let M be an \mathcal{L}-structure in which \leq is interpreted as a total order which is dense without endpoints. Show that M is o-minimal if and only if every definable non-empty subset $X \subset M$ with $X \neq M$ has finite non-empty boundary $\partial X=\bar{X} \backslash \dot{X}$, and for any $x<y$ in $\partial X \cup\{-\infty,+\infty\}$, if $] x, y[\cap \partial X$ is empty, then either $] x, y[\subset X$ or $] x, y[\cap X=\emptyset$.

Solution:

Assume first that M is o-minimal. By (a) X has finite non-empty boundary. Let $x<y$ for $x, y \in \partial X \cup\{-\infty, \infty\}$, such that $] x, y[\cap \partial X=$ \emptyset. Interpreting this in the language of the solution to (a), there is a j, such that $x=a_{j}$ and $y=a_{j+1}$. By the Lemma in the solution to (a), $] x, y[\subseteq X$ or $] x, y[\cap X=\emptyset$.
Now assume the second part. To show o-minimality, we already know that (M, \leq) forms a dense linear order without endpoints and hence only have to show that definable subsets of M are finite unions of points and open intervals. So let X be a definable subset of M. If $X=\emptyset$ or $X=M$, then it is clearly a finite union of points and open intervals, so we may assume that X has finite non-empty boundary. Let $-\infty=a_{0} \leq a_{1} \leq \ldots \leq a_{n}=\infty$ as in (a). By the assumption, we know that $] a_{j}, a_{j+1}[$ is either fully contained in X or disjoint from X. Hence X is the following finite union of points and open intervals

$$
\left.X=\bigcup_{p \in \partial X \cap X}\{p\} \cup \bigcup_{] a_{j}, a_{j+1}[\subseteq X}\right] a_{j}, a_{j+1}[.
$$

Exercise 3

Let $\mathcal{L}_{0}=(\cdot, e, \leq)$ be the language of ordered groups. Let M be an o-minimal \mathcal{L}_{0}-structure which is a model of the theory of ordered groups. (Which means that the order has the property that $x \leq y$ implies $x z \leq y z$ and $z x \leq z y$ for all $z \in M$.)
(a) Let $H \subset M$ be a definable subgroup of (M, \cdot). Show that H is an interval, i.e., if $e<h$ for some $h \in H$, then $[e, h] \subset H$.

Hint: By contradiction, show that if this is false, then there is an infinite "discrete" definable set.

Solution:

Assume for contradiction that $e, h \in H$, but $g \in M \backslash H$ with $e \leq g \leq h$.

Since $e \leq h, h \leq h^{2}$. Since $e \leq g, h \leq g h$. Since $g \leq h, g h \leq h^{2}$. Now $h^{2} \in H$ and $g h \notin H$, since otherwise $g h h^{-1} \in H$. Similarly we get

$$
e \leq g \leq h \leq g h \leq h^{2} \leq g h^{2} \leq h^{3} \leq g h^{3} \leq \ldots
$$

Since M is o-minimal and H is a definable subgroup of M, H has to be a finite union of points and open intervals, but by the above sequence, we see that there are infinitely many elements $g h^{k} \in M \backslash H$ between the $h^{k} \in H$, which is a contradiction.
(b) Show that the only definable subgroups of (M, \cdot) are $\{e\}$ and M.

Solution:

Let $H \neq\{e\}$ be a definable subgroup. By (a), H is open (Every element $h \in H$ is contained in an open interval $\left.\left(h^{-2}, h^{2}\right) \subseteq H\right)$. We claim that $M \backslash H$ is open too:
Let $e \leq k \in M \backslash H$. Since $e \leq h, k \leq h k$ and since $h^{-1} \leq e, h^{-1} k \leq k$. Both $h k$ and $h^{-1} k$ are not in H and hence $\left.k \subset\right] h^{-1} k, h k[\subseteq M \backslash H$.
Since M is d-connected and $H \neq \emptyset, M \backslash H$ has to be empty, hence $H=M$.
(c) Deduce that (M, \cdot) is abelian and divisible, i.e. that for any $y \in M$ and $n \geq$ 1 integer, there exists $x \in M$ such that $x^{n}=y$.

Solution:

The definable subgroups $\operatorname{Cent}_{M}(\{a\})=\left\{g \in M: a g a^{-1}=g\right\}$ for $a \in$ $M \backslash\{e\}$ clearly contain $a \in \operatorname{Cent}_{M}(\{a\})$, and by (b) $\operatorname{Cent}_{M}(\{a\})=M$. Hence everything commutes with a and M is abelian.
For every $n \geq 2$ we consider the definable subgroup

$$
\Gamma_{n}=\left\{y: \exists x: x^{n}=y\right\},
$$

which is not $\{e\}$, since $g^{n} \in \Gamma_{n}$ for every $g \in M \backslash\{e\}$. By (b) $\Gamma_{n}=M$, and hence M is divisible.

Exercise 4

Let $\mathcal{L}=(+,-, \cdot, 0,1, \leq)$ be the language of ordered rings. Let M be an o-minimal \mathcal{L}-structure which is a model of the theory of ordered rings (not necessarily commutative; this means that $0<1$ in M, that $(M,+)$ is an ordered abelian group, and that the order has the property that whenever $x \leq y$ and $z \geq 0$, also $x z \leq y z)$. Hint: Use exercise 3 .
(a) Show that for every $x \in M \backslash\{0\}$, there is an inverse element $y \in M$ with $x \cdot y=1$.

Solution:

For $x \in M \backslash\{0\}$, we consider the definable subgroup $x \cdot M=\{t \in$ $M: \exists y \in M: t=x \cdot y\}<(M,+)$. By exercise 3 (c), $x \cdot M=M$ and hence there is an inverse $y \in M$ with $x \cdot y=1$.
(b) Show that the positive elements of M form an ordered group with the multiplication.

Solution:

Clearly, $(M \backslash\{0\}, \cdot)$ is a group. To see that $\operatorname{Pos}(M)=\{x \in M: x>0\}$ is a group, we have to check that it is closed under multiplication and taking inverses. Indeed when $0 \leq y$ and $z \geq 0$, then $0=0 \cdot z \leq y \cdot z \in$ $\operatorname{Pos}(M)$ by the axioms of ordered rings. Moreover, if $y \geq 0$, then also $y^{-1} \geq 0$, since otherwise $1=z z^{-1} \leq 0$. The group $\operatorname{Pos}(M)$ is an ordered group, since M is an ordered ring.
(c) Show that M is an ordered field.

Solution:

The ring M is a field, since it has an inverse by (a) and the multiplication is commutative by Exercise 3 (c) applied to the subgroup of positive elements (and multiplying by (-1) the negative elements).
(d) Show that positive elements in M have a square root.

Solution:

This follows from Exercise 3(c) applied to the group of positive elements. A square root is the special case $n=2$ of divisibility.
(e) Show that addition and multiplication are continuous on M^{2} (with the order topology on M and the product of the order topology on M^{2}).

Solution:

The open intervals form a basis of open sets in the topology on M.
Thus it suffices to show that the preimages of open intervals is open.
Consider the open set $] u, v[\subseteq M$ for $u<v \in M$.
Given $(a, b) \in+{ }^{-1}(] u, v[)$, we consider the open set

$$
\begin{gathered}
B=] a+\Delta_{-}, a+\Delta_{+}[\times] b+\Delta_{-}, b+\Delta_{+}\left[\subseteq M^{2} \quad\right. \text { for } \\
\Delta_{-}=\frac{u-a-b}{2}<0 \quad \text { and } \quad \Delta_{+}=\frac{v-a-b}{2}>0 .
\end{gathered}
$$

Clearly $(a, b) \in B$. For all $(x, y) \in B$ we have

$$
u=a+b+2 \Delta_{-}<x+y<a+b+2 \Delta_{+}=v
$$

and hence $+(B) \subseteq] u, v\left[\right.$, i.e. $+^{-1}(] u, v[)$ is open.
For the multiplication, we first restrict ourselves to the case $u, v>0$, we let $(a, b) \in(\cdot)^{-1}(] u, v[)$, and in the case $a, b>0$ consider the open set

$$
\begin{gathered}
B=] a \cdot \Delta_{-}, a \cdot \Delta_{+}[\times] b \cdot \Delta_{-}, b \cdot \Delta_{+}\left[\subseteq M^{2} \quad\right. \text { for } \\
\Delta_{-}=\sqrt{u /(a b)}<1 \quad \text { and } \quad \Delta_{+}=\sqrt{v /(a b)}>1 .
\end{gathered}
$$

Again $(a, b) \in B$ and for all $(x, y) \in B$ we have

$$
u=a b \Delta_{-}^{2}<x \cdot y<a b \Delta_{+}^{2}=v
$$

and hence $(\cdot)(B) \subseteq] u, v[$.
In the case $a, b<0$, we have instead $(a, b) \in-B$ and $(\cdot)(-B)=$ $(\cdot)(B) \subseteq] u, v\left[\right.$. In both cases $(\cdot)^{-1}(] u, v[)$ is open.
When u, v are not both positive we can do similar constructions.
(f) Show that for $f \in M[X]$, the polynomial function associated to f from M to M is a definable continuous function.

Solution:

A polynomial is a conjunction of additions and multiplications, both of which are continuous according to (e).
(g) Show that M is a real-closed field. Hint: Use the criterion that a field F is real closed if and only if (1) for every $a \in F$, either a or $-a$ is a square and (2) every polynomial in $F[X]$ of odd degree has a root in F.

Solution:

(1) Let $a \in M$. By (d), $|a|=\max \{a,-a\}$ has a square root.
(2) Let $f=\sum_{i=0}^{d} a_{i} X^{i} \in M[X]$ be a polynomial of odd degree d. We may assume without loss of generality that f is monic (otherwise take $f /\left(a_{d}\right)$ instead of $\left.f\right)$. The goal is to find $x, y \in M$ such that $f(x)<0<f(y)$ and to then use the intermediate value theorem for for o-minimal structures.

We let $y=\max _{i}\left\{d\left|a_{i}\right|, 1\right\}$. If $d\left|a_{i}\right|<1$, for every $i=1, \ldots, d-1$, then

$$
\left|\sum_{i=0}^{d-1} a_{i} y^{i}\right| \leq \sum_{i=1}^{d-1}\left|a_{i}\right| \leq d \cdot \max \left\{\left|a_{i}\right|\right\}<1=y=y^{d}
$$

so $f(y)=y^{d}+\sum a_{i} y^{i}>0$. If however there is a j, such that $y=d\left|a_{j}\right|$, then we have

$$
\left|\sum_{i=0}^{d-1} a_{i} y^{i}\right| \leq \sum_{i=0}^{d-1}\left|a_{i}\right| d^{i}\left|a_{j}\right|^{d}<\sum_{i=0}^{d-1} d^{d-1}\left|a_{j}\right|^{d}=d^{d}\left|a_{j}\right|^{d}=y^{d} .
$$

Thus $f(y)=y^{d}+\sum a_{i} y^{i}>0$. A similar calculation shows that $x:=-y$ satisfies $f(x) \leq 0$.

We now use the intermediate value theorem for o-minimal structures to find a 0 .

