Solutions to Sheet 5

Let \mathcal{L} be a language containing \leq and let M be an o-minimal \mathcal{L} -structure. We say "definable" for "definable with parameters".

Exercise 1

(a) Let C be a cell of type $c = (c_i)_{1 \le i \le m}$. Show that C is open in M^m if and only if $c_i = 1$ for all i.

Solution:

We do indiction on m.

Let first C be open in M^m . If m = 1, C has to be a point or an interval and since points are not open it has to be an open interval, hence of type (1). Now assume that all open cells in M^{m-1} are of type $(1)_{i=1,\dots,m-1}$. Since C is open, we can find an open box $B = \prod |a_i, b_i|$ arounde every point $p \in B \subseteq C$. Projecting down one dimension, we know that $\pi(C)$ is a cell and the box $\pi(B)$ around $\pi(p)$ makes $\pi(C)$ open. By induction hypothesis, we know that $\pi(C)$ has type $(1)_{i=1,\dots,m-1}$. Since the fibre of $\pi(p) \in \pi(C)$ contains an open interval $|a_m, b_m|$, C has to have type $(1)_{i=1,\dots,m}$.

Let *C* now be an cell of type $(1)_{i=1,\ldots,m}$. If m = 1, this means that *C* is an open interval. For larger *m*, we have two definable continuous functions f_1, f_2 such that $C = \{p = (p_1, \ldots, p_m) \in M^m: f(p_1, \ldots, p_{m-1}) < p_m < f(p_1, \ldots, p_{m-1})\}$. The cell $\pi(C)$ has type $(1)_{i=1,\ldots,m-1}$ and is open by induction assumption. For $p \in C$ let $B' = \prod_{i=0}^{m-1} |a_i, b_i|$ be an open neighborhood of $\pi(p) \in \pi(C)$. By restricting *B'*, we may assume that there exists an $\varepsilon > 0$ such that $f_1(t) + \varepsilon < f_2(t) - \varepsilon$ for all $t \in B'$, since f_1, f_2 are continuous. Let $a_m = \sup\{f_1(t): t \in B'\}$ and $b_m = \inf\{f_2(t): t \in B'\}$. Since $f_1(t) - f_2(t) > 2\varepsilon, a_m - b_m \ge 2\varepsilon$, hence $a_m \ne b_m$. Now $B' \times |a_m, b_m| \subseteq C$ is an open neighborhood of *p*, hence *C* open.

(b) Show that if I_i is a non-empty open interval for $1 \le i \le m$, then $I_1 \times \cdots \times I_m$ is an open cell in M^m .

Solution:

We obtain $\prod I_i$ by taking f_1, f_2 as constant functions in every step, so $\prod I_i$ is a cell of type $(1, \ldots, 1)$ and by (a) it is open.

Exercise 2

The goal of this exercise is to show that if $X \subset M^m$ is a definable set which is the union of finitely many cells C_i and if X has non empty interior, then one of the C_i is an open cell (without using cell decompositions!).

We do this by induction on m, so assume that the property holds for subsets of M^{m-1} . Assume that the interior of $X \subset M^m$ is not empty, and let $x_0 \in X$ be an interior point. Let $x'_0 \in M^{m-1}$ be the projection on the first m-1coordinates, and similarly use A' to denote the image of a subset $A \subset M^m$.

(a) Show that there exists an open neighborhood U of x'_0 such that the fiber X_y of the projection $X \to M^{m-1}$ is infinite if $y \in U$.

Solution:

Since the interior X° is open, we can find an open box $B = \prod_{i=1}^{m}]a_i, b_i [\subseteq X^{\circ}$ containing x_0 . We let U = B', which now is an open neighborhood of x'_0 . For every $y \in U$, we have $]a_m, b_m [\subseteq X_y^{\circ} \subseteq X_y = \{p \in X : p' = y\}$. This is an infinite set.

(b) Show that there exists $y \in U$ such that X_y is contained in the union of the C_i where C'_i is open in M^{m-1} .

Solution:

Note that if C_i is a cell such that C'_i is not open, then by exercise 1, C'_i is not of type $(1, \ldots, 1)$. This implies that C'_i has empty interior. By general topological facts, the union of all non-open C'_i also has empty interior. Thus

$$U \cap \bigcup_{C'_i \text{ not open}} C'_i \subseteq M^{m-1}$$

has empty interior, but U does not, so there exists

$$y \in U \setminus \bigcup_{C'_i \text{ not open}} C'_i = U \cap \bigcup_{C'_i \text{ open}} C'_i$$

Thus $X_y \subseteq U \cap \bigcup_{C'_i \text{ open}} C_i$.

(c) Conclude that some C_i is an open cell.

Solution:

We consider the finitely many cells C_i such that C'_i is open. Then $X_y \subseteq \bigcup_{C'_i \text{ open}} C_i$ by (b). Since X_y is infinite by (a), it there must be a C_i with open C'_i such that C_i contains infinitely many elements of X_y . This cell must therefore have type $c_m = 1$ and overall have type $(1)_{i=1,\dots,m}$, as C'_i is of type $(1)_{i=1,\dots,m-1}$. By exercise 1, C_i is open.

Exercise 3

We assume that \mathcal{L} extends the language of ordered rings, so that M is an ordered ring. For any n < m, let $\pi_{m,n} \colon M^m \to M^n$ be the projection to the first n coordinates.

(a) For any cell $C \subset M^m$, show that there is a definable homeomorphism $C \to M^{\dim(C)}$.

Solution:

We use induction on m.

Since M is an ordered ring and o-minimal, M is a real closed field, (by the last exercise of Sheet 4). We first construct a definable homeomorphism $\varphi:]-1, 1[\rightarrow M$ by

$$x \mapsto \frac{-x}{(x-1)(x+1)}$$

If $M = \mathbb{R}$, then φ is a homeomorphism. Since being continuous and being bijective are definable properties, and since the theory of real closed fields is complete, φ is also a homeomorphism over other real closed fields.

Now we can modify this function to obtain homeomorphisms $\varphi_{a,b}$: $]a, b[\to M$ by $\varphi_{a,b}(t) = \varphi(\frac{t-a}{b-a})$. For open intervals that include infinity, we can define

$$\varphi_{-\infty,a}(t) = (t-a) - \frac{1}{t-a} = \varphi_{a,\infty}(t)$$

This shows the statement for m = 1, since the only cells are either points (which are definably homeomorphic to M^0) and open intervals.

Now assume that the statement holds for m-1, i.e. for every $\pi(C)$ there is a definable homeomorphism $\varphi_{\pi(C)} \colon \pi(C) \to M^{\dim(\pi(C))}$.

If $C \subseteq M^m$ has type $c_m = 0$, then it is definably homeomorphic to $\pi(C)$, which is a cell in M^{m-1} and hence definably homeomorphic to $M^{\dim(\pi(C))} = M^{\dim(C)}$. Composing two definable homeomorphisms results in another definable homeomorphism, hence C is definably homeomorphic to $M^{\dim(C)}$.

If $c_m = 1$, then there are continuous functions $f_1, f_2 : \pi(C) \to M$ such that $f_1 < f_2$ and $C = \{(x, y) \in M^{m-1} \times M : f_1(x) < y < f_2(x)\}$. We define

$$\varphi_C \colon \quad C \to M^{\dim(\pi(C))} \times M = M^{\dim(C)}$$
$$(x, y) \mapsto (\varphi_{\pi(C)}(x), \varphi_{f_1(x), f_2(x)}(y))$$

and see that φ_C is definable. Over \mathbb{R} we can see that this function is also a homeomorphism, hence it is a homeomorphism over the real closed field M.

(b) Let $X \subset M^m$ be definable. Show that there is a definable map $\sigma \colon \pi_{m,n}(X) \to X$ such that $\pi_{m,n} \circ \sigma$ is the identity.

Solution:

Choose a cell decomposition \mathcal{D} of X. Then $\mathcal{D}_n = \pi_{m,n}$ is also a cell decomposition and over every cell $C_n \in \mathcal{D}_n$ there are finitely many cells $C \in \mathcal{D}$. For every cell $C_n \in \mathcal{D}_n$ we pick the "lowest" cell C above C_n which for every c_i is defined by either $\Gamma(f)$ if $c_i = 0$ or $]f_1, f_2[$ if $c_i = 1$ in each step.

We define

$$\sigma \colon \pi_{m,n}(X) \to X$$

$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, \psi_{n+1}(x_1, \dots, x_n), \dots, \psi_m(x_1, \dots, \psi_{m-1}(x_1, \dots, x_{m-1}))$$

where $\psi_k(x_1, \ldots, x_{k-1}) = f(x_1, \ldots, x_{k-1})$ if $c_k = 0$ (and f is the defining function in this step), or

$$\psi_k(x_1,\ldots,x_{k-1}) = \frac{f_1(x_1,\ldots,x_{k-1}) + f_2(x_1,\ldots,x_{k-1})}{2}$$

if $c_k = 1$ (and f_1, f_2 are defining functions in this step), or

$$\psi_k(x_1,\ldots,x_{k-1}) = f_1(x_1,\ldots,x_{k-1}) + 1$$

if $c_k = 1$ (and $f_2 = \infty$), or

$$\psi_k(x_1,\ldots,x_{k-1}) = f_2(x_1,\ldots,x_{k-1}) - 1$$

if $c_k = 1$ (and $f_1 = -\infty$), or

$$\psi_k(x_1,\ldots,x_{k-1})=1$$

if $c_k = 1$ (and $f_1 = -\infty$ and $f_2 = \infty$). By construction, σ is well defined and definable. For every $x = (x_1, \ldots, x_n)$ we have

$$\pi_{m,n}(\sigma(x)) = x.$$

Exercise 4

For a cell C, we define $\chi(C) = (-1)^{\dim(C)}$. For a finite family $\mathcal{C} = (C_i)_{i \in I}$ of disjoint cells in M^m , we define

$$\chi(\mathcal{C}) = \sum_{i \in I} \chi(C_i) = \sum_{k=0}^m (-1)^k n_k$$

where n_k is the number of cells of dimension k in C.

(a) Let \mathcal{D} be a cellular decomposition of a cell $C \subset M^m$. Show that

$$\chi(\mathcal{D}) = \chi(C)$$

(Hint: use induction on m, and sum over the projections of the cells in M^{m-1} , according to their type.)

Solution:

If m = 1, and $C \subseteq M$ is a cell, then it is either a point, in which case there is only one decomposition, or C is an open interval. If C =]a, b[, every cellular decomposition of C has to be of the form

$$\mathcal{D} = \{]a, t_1[\{t_1\},]t_1, t_2[, \{t_2\}, \dots,]t_n, b[\} \}$$

by o-minimality. We have

$$\chi(\mathcal{D}) = n_0 - n_1 = -1 = (-1)^{\dim(C)} = \chi(C).$$

Now assume that $\chi(\mathcal{D}) = \chi(C)$ for every cell in M^{m-1} . For every cellular decomposition \mathcal{D} of a cell $C \subseteq M^m$, we get a cellular decomposition $\pi(\mathcal{D})$ of the cell $\pi(C) \subseteq M^{m-1}$.

If the type of C ends with $c_m = 0$, then we have $\dim(C) = \dim(\pi(C))$ and hence $\chi(C) = \chi(\pi(C))$. For all $D \in \mathcal{D}$ we then also have $\chi(D) = \chi(\pi(D))$ for the same reason. In total we use the induction hypothesis to show

$$\chi(C) = \chi(\pi(C)) = \chi(\pi(\mathcal{D})) = \sum_{\pi(D) \in \pi(\mathcal{D})} \chi(\pi(D)) = \sum_{D \in \mathcal{D}} \chi(D) = \chi(\mathcal{D}).$$

If the type of C ends with $c_m = 1$, then $\dim(C) = \dim(\pi(C)) + 1$ and hence $\chi(C) = -\chi(\pi(C))$. For all $\tilde{D} \in \pi(\mathcal{D})$ we have

$$\{C_i \in \mathcal{D} \colon \pi(C_i) = \tilde{D}\} = \{]f_0, f_1[, \Gamma(f_1),]f_1, f_2[, \dots, \Gamma(f_n),]f_n, f_{n+1}[\},$$

where we denote $\Gamma(f)$ by a cell of type $(\ldots, 0)$ defined by f and $]f_i, f_{i+1}[$ by a cell of type $(\ldots, 1)$ defined by f_i, f_{i+1} for $f_i < f_{i+1}$, all of them with base D. Note that this set contains n many cells of dimension dim (\tilde{D}) and n+1 many cells of dimension dim $(\tilde{D}) + 1$. The Euler-characteristic is then $\chi(\Gamma(f_i)) = \chi(\tilde{D})$ and $\chi(]f_i, f_{i+1}[) = -\chi(\tilde{D})$. We then have

$$\chi(\mathcal{D}) = \sum_{\tilde{D} \in \pi(\mathcal{D})} \sum_{\substack{C_i \in \mathcal{D} \\ \pi(C_i) = \tilde{D}}} \chi(C_i) = \sum_{\tilde{D} \in \pi(\mathcal{D})} \left(\sum_{i=1}^n \chi(\Gamma(f_i)) + \sum_{i=0}^n \chi(]f_i, f_{i+1}[) \right)$$
$$= \sum_{\tilde{D} \in \pi(\mathcal{D})} n \cdot \chi(\tilde{D}) - (n+1) \cdot \chi(\tilde{D}) = \sum_{\tilde{D} \in \pi(\mathcal{D})} -\chi(\tilde{D})$$
$$= -\chi(\pi(\mathcal{D})) = -\chi(\pi(C)) = -(-1)^{\dim(\pi(C))} = (-1)^{\dim(C)} = \chi(C).$$

(b) Let $X \subset M^m$ be definable. Show that $\chi(\mathcal{D})$ is independent of \mathcal{D} for all cellular decompositions of X. This common value is denoted $\chi(X)$.

Solution:

Given two cellular decompositions \mathcal{D}_1 and \mathcal{D}_2 , we use the cellular decomposition theorem to obtain a new cellular decomposition \mathcal{D} which is adapted to all the finitely many definable subsets of M^m that are elements in \mathcal{D}_1 and \mathcal{D}_2 . We now use

$$\chi(\mathcal{D}_1) = \sum_{C \in \mathcal{D}_1} \chi(C) = \sum_{C \in \mathcal{D}_1} \sum_{\substack{D \in \mathcal{D} \\ D \subseteq C}} \chi(D) = \sum_{D \in \mathcal{D}} \chi(D)$$
$$= \sum_{C \in \mathcal{D}_2} \sum_{\substack{D \in \mathcal{D} \\ D \subseteq C}} \chi(D) = \sum_{C \in \mathcal{D}_2} \chi(C) = \chi(\mathcal{D}_2).$$

(c) Show that if X_1 and X_2 are definable subsets of M^m , then

$$\chi(X_1 \cup X_2) = \chi(X_1) + \chi(X_2) - \chi(X_1 \cap X_2).$$

(Hint: first treat the case where X_1 and X_2 are disjoint.)

Solution:

If X_1, X_2 are disjoint, then we can choose any cellular decomposition \mathcal{D} adapted to X_1 and X_2 to get $\chi(X_1 \cup X_2) = \chi(X_1) + \chi(X_2)$. Now in the general case, we apply the previous formula the following three disjoint unions

$$X_1 \cup X_2 = X_1 \setminus X_2 \stackrel{.}{\cup} X_2$$

= $X_2 \setminus X_2 \stackrel{.}{\cup} X_1$
= $X_1 \setminus X_2 \stackrel{.}{\cup} X_2 \setminus X_1 \stackrel{.}{\cup} X_1 \cap X_2$

to obtain

$$\chi(X_1 \cup X_2) = \chi(X_1 \setminus X_2 \cup X_2) + \chi(X_2 \setminus X_1 \cup X_1) - \chi(X_1 \setminus X_2 \cup X_2 \setminus X_1 \cup X_1 \cap X_2)$$

= $\chi(X_2) + \chi(X_1) - \chi(X_1 \cap X_2).$

(d) Let $X \subset M^m$ be definable and let n < m. Show that for any $k \in \mathbb{Z}$, the set

$$\{a \in M^n \mid \chi(X_a) = k\}$$

is definable.

Solution: Let \mathcal{D} be a cellular decomposition of the definable set X, hence $\pi_{m,n}(\mathcal{D})$ is a cellular decomposition of $\pi_{m,n}(X) \subseteq M^n$. Let $\tilde{C} \in \pi_{m,n}(\mathcal{D})$. For every $a \in \tilde{C}$, the number and types of cells in X_a is the same. Hence the function $\tilde{C} \to \mathbb{Z}, a \mapsto \chi(X_a)$ is constant. Let now

$$\mathcal{D}_k = \left\{ \tilde{C} \in \pi_{m,n}(\mathcal{D}) \colon \forall a \in \tilde{C} \colon \chi(X_a) = k \right\} \subseteq M^n.$$

which is a finite set of definable cells $\tilde{C}_i \in \pi_{m,n}(\mathcal{D})$. Let $\varphi_i(\underline{\mathbf{x}})$ be the corresponding definable formulas, such that $\varphi_i(M^n) = \tilde{C}_i$. Then

$$\{a \in M^n \colon \chi(X_a) = k\} = \left(\bigvee_i \varphi_i(\underline{x})\right)(M^n).$$

is a definable set.