Solutions to Sheet 6

Let \mathcal{L} be a language containing \leq and let M be an o-minimal \mathcal{L}-structure. We say "definable" for "definable with parameters". This sheet is about point-set topology of definable sets.

Exercise 1

The goal of this exercise is to prove that definable sets in \mathbb{R}^{m} are connected if and only if they are d-connected. Suppose that $M=\mathbb{R}$ with the usual interpretation of the order.
(a) Let $X \subseteq \mathbb{R}^{m}$ be a definable set which is connected in the usual topological sense. Show that X is d-connected.

Solution:

Let $U, V \subseteq X$ be two definable open sets with $U \cup V=X$ and $U \cap V=\emptyset$. Since X is connected, $U=\emptyset$ or $V=\emptyset$, hence X is d-connected.
(b) Let $C \subseteq \mathbb{R}^{m}$ be a cell. Show that C is connected in the usual topological sense.

Solution:

We do induction. For $m=0$, points are connected. For $m=1$, cells are open intervals (or points), which are connected in the usual topological sense. Now assume that the projection $C^{\prime} \subseteq M^{m-1}$ is connected. Let U, V be two open sets with $U \cup V=C$ and $U \cap V=\emptyset$. For $y \in C^{\prime}$ consider the fibre $C_{y} \subseteq C$ and note that we have the disjoint decomposition

$$
\left(U \cap C_{y}\right) \cup\left(V \cap C_{y}\right)=C_{y} \quad\left(U \cap C_{y}\right) \cap\left(V \cap C_{y}\right)=\emptyset
$$

into open sets $\left(U \cap C_{y}\right)$ and $\left(V \cap C_{y}\right)$. The set C_{y} is either a point or an open interval, hence connected and hence $\left(U \cap C_{y}\right)=\emptyset$ or $\left(V \cap C_{y}\right)=\emptyset$. From this we get that the projections of U and V don't intersect $U^{\prime} \cap V^{\prime}=\emptyset$. Since also $U^{\prime} \cup V^{\prime}=C^{\prime}$ and U^{\prime} and V^{\prime} are open, we use the induction hypothesis to conclude $U^{\prime}=\emptyset$ or $V^{\prime}=\emptyset$, which implies $U=\emptyset$ or $V=\emptyset$ proving that C is connected in the usual topological sense.
(c) Let $X \subseteq \mathbb{R}^{m}$ be a d-connected definable set and \mathcal{D} a cellular decomposition of X. Assume that $X=U \cup V$ where U and V are disjoint open sets in X (for the usual topology, so $U=U_{1} \cap X$ where $U_{1} \subset \mathbb{R}^{m}$ is open, etc). Show that for any cell C of \mathcal{D}, we have $C \subset U$ or $C \subset V$.

Solution:

We have a disjoint decomposition $(U \cap C) \cup(V \cap C)=C$ into open sets $(U \cap C)$ and $(V \cap C)$. Since cells are connected (by (b)), we have either $(U \cap C)=\emptyset$, in which case $C \subseteq V$ or $(V \cap C)=\emptyset$ in which case $C \subseteq U$.
(d) Deduce that U and V are adapted to \mathcal{D} and conclude that d-connected definable subsets $X \subseteq \mathbb{R}^{m}$ are connected in the usual sense.

Solution:

By (c), U and V are adapted to \mathcal{D}. Let U, V be open sets form a disjoint cover $X=U \cup V$ of the definable set X. Since U and V are adapted, U and V are definable. If X is d-connected, this means that $U=\emptyset$ or $V=\emptyset$, which means that X is also connected in the usual sense.
(e) Find an o-minimal structure M and a d-connected definable subset which is not connected in the usual topology.

Solution:

We can for example take $\mathcal{L}=\{<\}$ and the \mathcal{L}-structure $M=\mathbb{R} \backslash\{0\}$ with the usual interpretation of $<$. We note that this is o-minimal, since the order is a dense linear order without endpoints and definable sets are finite unions of points and intervals.
We now have that M is d-connected, but not connected, because] $\infty, 0[$ and $] 0, \infty[$ are open disjoint subsets whose union is M. Note that these two open subsets are not d-connected.

Exercise 2

We assume that \mathcal{L} extends the language of ordered rings, so that we know that M is a real closed (ordered) field. Let $m \geq 1$ be an integer. We denote $|x|=\max (x,-x)$ for $x \in M$, and we put $\|x\|=\max \left(\left|x_{i}\right|\right)$ for $x=\left(x_{i}\right) \in M^{m}$. A subset $X \subset M^{m}$ is bounded if and only if there exists $A \in M$ such that $\|x\| \leq A$ for all $x \in A$.
(a) Prove that the topology of M^{m} is generated by the sets of the form $\{x \in$ $\left.M^{m} \mid\left\|x-x_{0}\right\|<\delta\right\}$ for $x_{0} \in M^{m}$ and $\delta>0$ in M.

Solution:

The usual topology on M^{m} is generated by products of intervals. The balls

$$
B\left(x_{0}, \delta\right)=\left\{x \in M^{m}:\left\|x-x_{0}\right\|<\delta\right\}
$$

are of the form $\left.B\left(x_{0}, \delta\right)=\prod\right] x_{0}-\delta, x_{0}+\delta[$ and hence open sets. On the other hand, if $\left.x \in \prod_{i}\right] a_{i}, b_{i}[$, then we can choose

$$
\delta_{x}=\min \left\{\left|x-a_{i}\right|,\left|x-b_{i}\right|: i=1, \ldots, m\right\},
$$

then

$$
\left.\bigcup_{x \in X} B\left(x, \delta_{x}\right)=\prod_{i}\right] a_{i}, b_{i}[
$$

which shows that the open balls generate the topology of M^{m}.
(b) Let $X \subset M^{m}$ be definable and let x_{0} be an element of M^{m} belonging to the closure of X. This means that there is a sequence $x_{n} \in X$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Sequences are not definable, but their role can be replaced by definable maps $\gamma:] 0, c\left[\rightarrow X\right.$ with $\lim _{x \rightarrow 0} \gamma(x)=x_{0}$.
(i) Assume that $x_{0} \in \bar{X} \backslash X$. Prove that there exists a non-empty open interval $I=] 0, c\left[\right.$ and a definable map $\gamma: I \rightarrow X$ such that $\| x_{0}-$ $\gamma(t) \|=t$ for all $t \in I$.
Hint: use Exercise 3 of Exercise Sheet 5.

Solution:

Let $x_{0} \in \bar{X} \backslash X$. The set

$$
D_{x_{0}}=\left\{\left\|x_{0}-x\right\| \in M: x \in X\right\}
$$

is a definable subset of M and hence by o-minimality a finite union of points and open intervals. Since $x_{0} \in \bar{X} \backslash X$, $D_{x_{0}}$ contains infinitely many arbitrarily small positive values. If $b=\sup \left\{x \in M: \forall y: 0<y \leq b, y \in D_{x_{0}}\right\}$, then we have that the open interval $] 0, b\left[\subseteq D_{x_{0}}\right.$. Now the set

$$
S=\{(t, x) \in] 0, b\left[\times X:\left\|x_{0}-x\right\|=t\right\} \subseteq M \times M^{m}
$$

is also definable and we have the projection

$$
\pi_{m+1,1}: S \rightarrow M
$$

By exercise 3 of sheet 5 , there is a definable map $\sigma:] 0, b[=$ $\pi_{m+1,1}(S) \rightarrow S$ that satisfies $\pi_{m+1,1} \circ \sigma(t)=t$ for all $t \in$ $] 0, b[$, which means that $\sigma(t)=(t, \gamma(t))$ for some $\gamma(t) \in X$. The map $\gamma:] 0, b[\rightarrow X$ is definable. For all $t \in] 0, b[$ we have $\sigma(t)=(t, \gamma(t)) \in S$, hence $\left\|x_{0}-\gamma(t)\right\|=t$.
(ii) Prove that there exists $c>0$ in M and a continuous definable map $\gamma:] 0, c\left[\rightarrow X\right.$ such that $\lim _{t \rightarrow 0} \gamma(t)=x_{0}$.
Hint: consider separately the case when $x_{0} \in X$.

Solution:

When $x_{0} \in X$, we can define $\gamma(t)=x_{0}$ which satisfies $\lim _{t \rightarrow 0} \gamma(t)=x_{0}$. If $x_{0} \in \bar{X} \backslash X$, we use (i) to obtain a definable map $\gamma:] 0, b\left[\rightarrow X\right.$ with $\left\|x_{0}-\gamma(t)\right\|=t$. For $\lim _{t \rightarrow 0} \gamma(t)=x_{0}$, we have to show that for all open neighborhoods U of x_{0}, there is a $T \in] 0, b[$ such that for all $t \in] 0, T[$ we have $\gamma(t) \in U$. By part (a) it is enough to consider $U=B\left(x_{0}, \delta\right)$. We can choose $T=\delta$ and we get that for all $t \in] 0, \delta\left[,\left\|x_{0}-\gamma(t)\right\|=t<\delta\right.$, hence $\gamma(t) \in B\left(x_{0}, \delta\right)$.
To get a definable map, we may use the monotonoicity theorem to restrict γ to $] 0, c[\subseteq] 0, b[$ such that γ is continuous.
(c) Let $C \subset M^{m}$ be a bounded cell and \bar{C} its closure. Let $\pi: M^{m} \rightarrow M^{m-1}$ be the projection that omits the last coordinate. Show that $\overline{\pi(C)}=\pi(\bar{C})$.
Hint: deal separately with the cases where C is a graph or the space between two graphs of continuous definable functions on $\pi(C)$; apply the previous exercise to show that if $a \in M^{m-1}$ is in the closure of $\pi(C)$, then it is in $\pi(\bar{C})$.

Solution:

For any continuous map, such as π, we have $\pi(\bar{C}) \subseteq \overline{\pi(C)}$. Now let $x_{0} \in \overline{\pi(C)} \backslash \pi(C)$. We have to show that $x_{0} \in \pi(\bar{C})$. By part (b) we get a definable continuous map $\gamma:] 0, c\left[\rightarrow \overline{\pi(C)}\right.$ with $\lim _{t \rightarrow 0} \gamma(t)=x_{0}$.
Now we upgrade it to $\left.\gamma^{\prime}:\right] 0, c[\rightarrow C$ by defining

$$
\gamma^{\prime}(t)=(t, f(t))
$$

if $C=\Gamma(f)$ and

$$
\gamma^{\prime}(t)=\left(t, \frac{f(t)+g(t)}{2}\right)
$$

if $C=] f, g[$. Note that we assumed C to be bounded, and hence f and g are bounded. Thus $\lim _{t \rightarrow 0} \gamma^{\prime}(t)$ exists in \bar{C}. Then $\pi\left(\lim _{t \rightarrow 0} \gamma^{\prime}(t)\right)=$ $\lim _{t \rightarrow 0} \gamma(t)=x_{0} \in \pi(\bar{C})$.
(d) Let $X \subset M^{m}$ be closed, bounded and definable. Let $f: X \rightarrow M^{n}$ be definable and continuous. The goal of this exercise is to prove that $f(X)$ is bounded.
(i) Assuming that $f(X)$ is not bounded, show that there exists a definable map $g: M \rightarrow X$ such that $\|f(g(t))\|>t$ for all $t \in M$.

Solution:

We consider the definable sets

$$
\begin{aligned}
T & =\{t \in] 1, \infty[: \exists x \in X:\|f(x)\|=t\} \\
S & =\{(t, x) \in T \times X:\|f(x)\|=t\} \subseteq M \times M^{m}
\end{aligned}
$$

and note that since $f(X)$ is not bounded, T contains arbitrarily large elements, and hence by o-minimality there is an $a \in M$ $(a>1)$ such that $] a, \infty[\subseteq T$. We now use Exercise 3 of Sheet 5, to obtain a definable map $\sigma:] a, \infty[\rightarrow S$ such that for all $t \in] a, \infty[$ we have $\pi_{m+1,1}(\sigma(t))=t$. We now define a map $g: M \rightarrow X$:
If $t>a-1$, let $g(t) \in X$ such that $\sigma(t+1)=(t+1, g(t)) \in S$. In this case

$$
\|f(g(t))\|=t+1>t
$$

If $t \leq a-1$, then we set $g(t) \in X$ such that $\sigma(a)=(a, g(t)) \in S$. Here also

$$
\|f(g(t))\|=a \geq t+1>t
$$

(ii) Show that the limit of $g(t)$ as $t \rightarrow+\infty$ in \bar{X} exists. Hint: apply the monotonicity theorem to each coordinate of g.

Solution:

Assume g is given in coordinates as $g: M \rightarrow X \subseteq M^{m}$ as $t \mapsto\left(g_{1}(t), \ldots, g_{m}(t)\right)$. By the monotonicity theorem there is a decomposition of M into finitely many points and open intervals such that g_{i} restricted to these open intervals is strictly monotonically increasing, decreasing or constant. Let $b_{i} \in M$ be sucht that $] b_{i}, \infty[$ is the rightmost interval in the decomposition of M corresponding to g_{i}. If g_{i} is strictly monotonically increasig, let $g_{i}(\infty)=\sup \left\{g_{i}(t): t \in\right] b_{i}, \infty[\}$, if g_{i} is strictly monotonically decreasig, let $g_{i}(\infty)=\inf \left\{g_{i}(t): t \in\right] b_{i}, \infty[\}$, if g_{i} is constant, let $g_{i}(\infty)=g_{i}\left(b_{i}+1\right)$. Since X is assumed to be bounded, we have $g_{i}(\infty) \in M$ also bounded. We now have $\lim _{t \rightarrow \infty} g(t)=\left(g_{1}(\infty), \ldots, g_{m}(\infty)\right) \in \bar{X}$.
(iii) Deduce a contradiction, hence the result.

Solution:

As f and the norm are continuous, we have for all $t \in M$ that $\lim _{t \rightarrow \infty}\|f(g(t))\|=\left\|f\left(\lim _{t \rightarrow \infty} g(t)\right)\right\| \in M$, which is a finite element and contradicts $\|f(g(t))\|>t$ from part (i).

