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Solutions to Sheet 6
Let L be a language containing ≤ and let M be an o-minimal L-structure.

We say “definable” for “definable with parameters”. This sheet is about point-set
topology of definable sets.

Exercise 1
The goal of this exercise is to prove that definable sets in Rm are connected if and
only if they are d-connected. Suppose thatM = R with the usual interpretation
of the order.

(a) Let X ⊆ Rm be a definable set which is connected in the usual topological
sense. Show that X is d-connected.

Solution:
Let U, V ⊆ X be two definable open sets with U ∪ V = X and
U ∩ V = ∅. Since X is connected, U = ∅ or V = ∅, hence X is
d-connected.

(b) Let C ⊆ Rm be a cell. Show that C is connected in the usual topological
sense.

Solution:
We do induction. Form = 0, points are connected. Form = 1, cells are
open intervals (or points), which are connected in the usual topological
sense. Now assume that the projection C ′ ⊆ Mm−1 is connected.
Let U, V be two open sets with U ∪ V = C and U ∩ V = ∅. For
y ∈ C ′ consider the fibre Cy ⊆ C and note that we have the disjoint
decomposition

(U ∩ Cy) ∪ (V ∩ Cy) = Cy (U ∩ Cy) ∩ (V ∩ Cy) = ∅

into open sets (U ∩ Cy) and (V ∩ Cy). The set Cy is either a point
or an open interval, hence connected and hence (U ∩ Cy) = ∅ or
(V ∩Cy) = ∅. From this we get that the projections of U and V don’t
intersect U ′ ∩ V ′ = ∅. Since also U ′ ∪ V ′ = C ′ and U ′ and V ′ are
open, we use the induction hypothesis to conclude U ′ = ∅ or V ′ = ∅,
which implies U = ∅ or V = ∅ proving that C is connected in the
usual topological sense.

(c) LetX ⊆ Rm be a d-connected definable set and D a cellular decomposition
of X. Assume that X = U ∪V where U and V are disjoint open sets in X
(for the usual topology, so U = U1∩X where U1 ⊂ Rm is open, etc). Show
that for any cell C of D, we have C ⊂ U or C ⊂ V .
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Solution:
We have a disjoint decomposition (U ∩ C) ∪ (V ∩ C) = C into open
sets (U ∩C) and (V ∩C). Since cells are connected (by (b)), we have
either (U ∩C) = ∅, in which case C ⊆ V or (V ∩C) = ∅ in which case
C ⊆ U .

(d) Deduce that U and V are adapted to D and conclude that d-connected
definable subsets X ⊆ Rm are connected in the usual sense.

Solution:
By (c), U and V are adapted to D. Let U, V be open sets form a
disjoint cover X = U ∪ V of the definable set X. Since U and V are
adapted, U and V are definable. If X is d-connected, this means that
U = ∅ or V = ∅, which means that X is also connected in the usual
sense.

(e) Find an o-minimal structure M and a d-connected definable subset which
is not connected in the usual topology.

Solution:
We can for example take L = {<} and the L-structure M = R \ {0}
with the usual interpretation of <. We note that this is o-minimal,
since the order is a dense linear order without endpoints and definable
sets are finite unions of points and intervals.

We now have that M is d-connected, but not connected, because ]−
∞, 0[ and ]0,∞[ are open disjoint subsets whose union is M . Note
that these two open subsets are not d-connected.

Exercise 2
We assume that L extends the language of ordered rings, so that we know
that M is a real closed (ordered) field. Let m ≥ 1 be an integer. We denote
|x| = max(x,−x) for x ∈M , and we put ‖x‖ = max(|xi|) for x = (xi) ∈Mm. A
subset X ⊂Mm is bounded if and only if there exists A ∈M such that ‖x‖ ≤ A
for all x ∈ A.

(a) Prove that the topology of Mm is generated by the sets of the form {x ∈
Mm | ‖x− x0‖ < δ} for x0 ∈Mm and δ > 0 in M .

Solution:
The usual topology on Mm is generated by products of intervals. The
balls

B(x0, δ) = {x ∈Mm : ‖x− x0‖ < δ}
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are of the form B(x0, δ) =
∏

]x0 − δ, x0 + δ[ and hence open sets. On
the other hand, if x ∈

∏
i ]ai, bi[, then we can choose

δx = min{|x− ai|, |x− bi| : i = 1, . . . ,m},

then ⋃
x∈X

B(x, δx) =
∏
i

]ai, bi[

which shows that the open balls generate the topology of Mm.

(b) Let X ⊂ Mm be definable and let x0 be an element of Mm belonging
to the closure of X. This means that there is a sequence xn ∈ X with
limn→∞ xn = x0. Sequences are not definable, but their role can be repla-
ced by definable maps γ : ]0, c[→ X with limx→0 γ(x) = x0.

(i) Assume that x0 ∈ X \X. Prove that there exists a non-empty open
interval I = ]0, c[ and a definable map γ : I → X such that ‖x0 −
γ(t)‖ = t for all t ∈ I.
Hint: use Exercise 3 of Exercise Sheet 5.

Solution:
Let x0 ∈ X \X. The set

Dx0
= {‖x0 − x‖ ∈M : x ∈ X}

is a definable subset of M and hence by o-minimality a fi-
nite union of points and open intervals. Since x0 ∈ X \ X,
Dx0

contains infinitely many arbitrarily small positive values.
If b = sup{x ∈ M : ∀y : 0 < y ≤ b, y ∈ Dx0}, then we have that
the open interval ]0, b[⊆ Dx0 . Now the set

S = {(t, x) ∈ ]0, b[×X : ‖x0 − x‖ = t} ⊆M ×Mm

is also definable and we have the projection

πm+1,1 : S →M.

By exercise 3 of sheet 5, there is a definable map σ : ]0, b[ =
πm+1,1(S) → S that satisfies πm+1,1 ◦ σ(t) = t for all t ∈
]0, b[, which means that σ(t) = (t, γ(t)) for some γ(t) ∈ X.
The map γ : ]0, b[→ X is definable. For all t ∈ ]0, b[ we have
σ(t) = (t, γ(t)) ∈ S, hence ‖x0 − γ(t)‖ = t.

(ii) Prove that there exists c > 0 in M and a continuous definable map
γ : ]0, c[→ X such that limt→0 γ(t) = x0.
Hint: consider separately the case when x0 ∈ X.
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Solution:
When x0 ∈ X, we can define γ(t) = x0 which satisfies
limt→0 γ(t) = x0. If x0 ∈ X \X, we use (i) to obtain a definable
map γ : ]0, b[→ X with ‖x0 − γ(t)‖ = t. For limt→0 γ(t) = x0,
we have to show that for all open neighborhoods U of x0, there
is a T ∈]0, b[ such that for all t ∈]0, T [ we have γ(t) ∈ U . By
part (a) it is enough to consider U = B(x0, δ). We can choose
T = δ and we get that for all t ∈]0, δ[, ‖x0−γ(t)‖ = t < δ, hence
γ(t) ∈ B(x0, δ).
To get a definable map, we may use the monotonoicity theorem
to restrict γ to ]0, c[⊆ ]0, b[ such that γ is continuous.

(c) Let C ⊂ Mm be a bounded cell and C its closure. Let π : Mm → Mm−1

be the projection that omits the last coordinate. Show that π(C) = π(C).
Hint: deal separately with the cases where C is a graph or the space between
two graphs of continuous definable functions on π(C); apply the previous
exercise to show that if a ∈Mm−1 is in the closure of π(C), then it is in
π(C).

Solution:
For any continuous map, such as π, we have π(C) ⊆ π(C). Now let
x0 ∈ π(C) \ π(C). We have to show that x0 ∈ π(C). By part (b) we
get a definable continuous map γ : ]0, c[→ π(C) with limt→0 γ(t) = x0.
Now we upgrade it to γ′ : ]0, c[→ C by defining

γ′(t) = (t, f(t))

if C = Γ(f) and

γ′(t) =

(
t,
f(t) + g(t)

2

)
if C =]f, g[. Note that we assumed C to be bounded, and hence f and
g are bounded. Thus limt→0 γ

′(t) exists in C. Then π(limt→0 γ
′(t)) =

limt→0 γ(t) = x0 ∈ π(C).

(d) Let X ⊂ Mm be closed, bounded and definable. Let f : X → Mn be
definable and continuous. The goal of this exercise is to prove that f(X)
is bounded.

(i) Assuming that f(X) is not bounded, show that there exists a defi-
nable map g : M → X such that ‖f(g(t))‖ > t for all t ∈M .

Solution:
We consider the definable sets

T = {t ∈]1,∞[ : ∃x ∈ X : ‖f(x)‖ = t}
S = {(t, x) ∈ T ×X : ‖f(x)‖ = t} ⊆M ×Mm.

4



Prof. Dr. E. Kowalski ETH Zürich
O-Minimality and Diophantine Applications

7. Dec. 2022

and note that since f(X) is not bounded, T contains arbitrarily
large elements, and hence by o-minimality there is an a ∈ M
(a > 1) such that ]a,∞[⊆ T . We now use Exercise 3 of Sheet 5,
to obtain a definable map σ : ]a,∞[→ S such that for all t ∈]a,∞[
we have πm+1,1(σ(t)) = t. We now define a map g : M → X:
If t > a − 1, let g(t) ∈ X such that σ(t + 1) = (t + 1, g(t)) ∈ S.
In this case

‖f(g(t))‖ = t+ 1 > t.

If t ≤ a− 1, then we set g(t) ∈ X such that σ(a) = (a, g(t)) ∈ S.
Here also

‖f(g(t))‖ = a ≥ t+ 1 > t.

(ii) Show that the limit of g(t) as t → +∞ in X exists. Hint: apply the
monotonicity theorem to each coordinate of g.

Solution:
Assume g is given in coordinates as g : M → X ⊆ Mm as
t 7→ (g1(t), . . . , gm(t)). By the monotonicity theorem there is
a decomposition of M into finitely many points and open in-
tervals such that gi restricted to these open intervals is strictly
monotonically increasing, decreasing or constant. Let bi ∈ M
be sucht that ]bi,∞[ is the rightmost interval in the decompo-
sition of M corresponding to gi. If gi is strictly monotonical-
ly increasig, let gi(∞) = sup{gi(t) : t ∈]bi,∞[}, if gi is strictly
monotonically decreasig, let gi(∞) = inf{gi(t) : t ∈]bi,∞[}, if
gi is constant, let gi(∞) = gi(bi + 1). Since X is assumed to
be bounded, we have gi(∞) ∈ M also bounded. We now have
limt→∞ g(t) = (g1(∞), . . . , gm(∞)) ∈ X.

(iii) Deduce a contradiction, hence the result.

Solution:

As f and the norm are continuous, we have for all t ∈ M that
limt→∞‖f(g(t))‖ = ‖f(limt→∞ g(t))‖ ∈M , which is a finite ele-
ment and contradicts ‖f(g(t))‖ > t from part (i).
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