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Solutions to Sheet 6
Let £ be a language containing < and let M be an o-minimal L-structure.
We say “definable” for “definable with parameters”. This sheet is about point-set
topology of definable sets.

Exercise 1

The goal of this exercise is to prove that definable sets in R™ are connected if and
only if they are d-connected. Suppose that M = R with the usual interpretation
of the order.

(a) Let X CR™ be a definable set which is connected in the usual topological
sense. Show that X is d-connected.

Solution:

Let U,V C X be two definable open sets with U UV = X and
UNV = 0. Since X is connected, U = @ or V = (), hence X is
d-connected.

(b) Let C CR™ be a cell. Show that C' is connected in the usual topological
sense.

Solution:

We do induction. For m = 0, points are connected. For m = 1, cells are
open intervals (or points), which are connected in the usual topological
sense. Now assume that the projection C’ C M™~! is connected.
Let U,V be two open sets with U UV = C and UNV = (). For
y € C' consider the fibre C;, C C' and note that we have the disjoint
decomposition

Unc)u(Vncy,) =aC, UnCy)Nn(Vndcy) =0

into open sets (U N Cy) and (V N Cy). The set Cy is either a point
or an open interval, hence connected and hence (U N C,) = 0 or
(VNCy) = 0. From this we get that the projections of U and V' don’t
intersect U’ NV’ = (. Since also U’ UV’ = C’ and U’ and V' are
open, we use the induction hypothesis to conclude U’ = @) or V' = 0,
which implies U = @ or V = ) proving that C is connected in the
usual topological sense.

(c) Let X CR™ be a d-connected definable set and D a cellular decomposition
of X. Assume that X = UUYV where U and V are disjoint open sets in X
(for the usual topology, so U = U; N X where U; C R™ is open, etc). Show
that for any cell C of D, we have C C U or C C V.
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Solution:

We have a disjoint decomposition (U N C)U (V N C) = C into open
sets (UNC) and (V NC). Since cells are connected (by (b)), we have
either (UNC) =0, in which case C C V or (VNC) = @ in which case
CCUu.

(d) Deduce that U and V are adapted to D and conclude that d-connected
definable subsets X C R™ are connected in the usual sense.

Solution:

By (c¢), U and V are adapted to D. Let U,V be open sets form a
disjoint cover X = U UV of the definable set X. Since U and V are
adapted, U and V are definable. If X is d-connected, this means that
U =0 or V =0, which means that X is also connected in the usual
sense.

(e) Find an o-minimal structure M and a d-connected definable subset which
is not connected in the usual topology.

Solution:

We can for example take £ = {<} and the L-structure M =R\ {0}
with the usual interpretation of <. We note that this is o-minimal,
since the order is a dense linear order without endpoints and definable
sets are finite unions of points and intervals.

We now have that M is d-connected, but not connected, because | —
00,0[ and ]0, 00| are open disjoint subsets whose union is M. Note
that these two open subsets are not d-connected.

Exercise 2

We assume that £ extends the language of ordered rings, so that we know
that M is a real closed (ordered) field. Let m > 1 be an integer. We denote
|x] = max(x, —x) for x € M, and we put ||z| = max(|z;|) for x = (z;) € M™. A
subset X C M™ is bounded if and only if there exists A € M such that ||z|| < A
for all x € A.

(a) Prove that the topology of M™ is generated by the sets of the form {z €
M™ | ||z — x| < 0} for zp € M™ and § > 0 in M.

Solution:
The usual topology on M™ is generated by products of intervals. The
balls

B(zg,0) ={x € M™: ||z — x| < 0}
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are of the form B(xg,d) = [[]zo — d, 20 + 6] and hence open sets. On
the other hand, if x € ], ]a;, b;[, then we can choose

0, = minf{|x — a;|, |z —b;|: i =1,...,m},

then

U B(QI}7(51) = H}a“bl[

zeX %

which shows that the open balls generate the topology of M™.

(b) Let X C M™ be definable and let o be an element of M™ belonging
to the closure of X. This means that there is a sequence z,, € X with
lim, o0 T, = xg. Sequences are not definable, but their role can be repla-
ced by definable maps v: ]0, ¢[— X with lim,_,oy(z) = zo.

(i) Assume that 7o € X \ X. Prove that there exists a non-empty open
interval I =]0,¢[ and a definable map v: I — X such that ||zg —
y(@)|| =t for all t € I.

Hint: use Ezxercise 8 of Exercise Sheet 5.

Solution:
Let 29 € X \ X. The set

Dy =A{llro—z]| e M: z € X}

is a definable subset of M and hence by o-minimality a fi-
nite union of points and open intervals. Since zo € X \ X,
D, contains infinitely many arbitrarily small positive values.
Ifb=sup{ex € M:Vy:0<y <by € Dy}, then we have that
the open interval |0,b[C D,,. Now the set

S={(t,z) €]0,b[xX: ||[zg —z| =t} S M x M™
is also definable and we have the projection
Tm+1,1" S — M.

By exercise 3 of sheet 5, there is a definable map o: |0,b[=
Tm+1,1(S) — S that satisfies 7411 0 0(t) = t for all t €
10,0, which means that o(t) = (¢,7(t)) for some v(t) € X.
The map ~v:]0,b[— X is definable. For all ¢t €]0,b] we have
o(t) = (t,v(t)) € S, hence ||xzg — y(t)|| = t.

(ii) Prove that there exists ¢ > 0 in M and a continuous definable map
~:]0,c[— X such that lim; o y(t) = zo.
Hint: consider separately the case when xg € X.
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Solution:

When zp € X, we can define v(t) = z¢ which satisfies
lim; 0 v(t) = zo. If 9 € X \ X, we use (i) to obtain a definable
map v: |0,b[— X with ||zg — y(¢)|| = t. For lim;_,oy(t) = o,
we have to show that for all open neighborhoods U of xg, there
is a T €]0,b[ such that for all ¢ €]0, T we have v(¢t) € U. By
part (a) it is enough to consider U = B(xg,d). We can choose
T = ¢ and we get that for all ¢ €]0,d][, ||xo —~(¢)|| =t < J, hence
~(t) € B(xg,9).

To get a definable map, we may use the monotonoicity theorem
to restrict  to ]0,¢[ C]0, b[ such that v is continuous.

(c) Let C C M™ be a bounded cell and C its closure. Let m: M™ — M™~!

be the projection that omits the last coordinate. Show that 7(C) = = (C).

Hint: deal separately with the cases where C' is a graph or the space between
two graphs of continuous definable functions on w(C); apply the previous
exercise to show that if a € M™™1 is in the closure of w(C), then it is in

w(C).

Solution: L

For any continuous map, such as 7, we have 7(C) C 7(C). Now let
xo € ©(C) \ 7(C). We have to show that 2y € m(C). By part (b) we
get a definable continuous map «: 0, c[— 7(C) with lims_,o y(t) = xo.
Now we upgrade it to v': ]0,¢[— C by defining

V() = f(1)

00 - (1 L0290)

if C =|f, g[. Note that we assumed C' to be bounded, and hence f and
g are bounded. Thus lim; 0 v'(t) exists in C. Then 7 (lim; 0 7/(t)) =
lim; 0 y(t) = 2o € 7(C).

it C =T(f) and

(d) Let X € M™ be closed, bounded and definable. Let f: X — M™ be
definable and continuous. The goal of this exercise is to prove that f(X)
is bounded.

(i) Assuming that f(X) is not bounded, show that there exists a defi-
nable map g: M — X such that || f(g(¢))|| >t for all t € M.

Solution:
We consider the definable sets

T={te]l,00l: Jw e X: |f(a)] =t}
S={(t,x) €T x X: ||f(x)] =t} M x M™.
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and note that since f(X) is not bounded, T contains arbitrarily
large elements, and hence by o-minimality there is an a € M
(a > 1) such that Ja,oco[ C T. We now use Exercise 3 of Sheet 5,
to obtain a definable map o: |a, co[— S such that for all ¢ €]a, oo]
we have Ty, 41.1(0(t)) = t. We now define a map g: M — X:
Ift >a—1,let g(t) € X such that o(t +1) = (¢ +1,9(¢)) € S.
In this case
IF gDl =t +1 >t

If t < a—1, then we set g(t) € X such that o(a) = (a,g(t)) € S.
Here also
[flgt)=a>t+1>t

(ii) Show that the limit of g(t) as t — +oco in X exists. Hint: apply the
monotonicity theorem to each coordinate of g.

Solution:

Assume ¢ is given in coordinates as g: M — X C M™ as
t — (g1(t),...,9m(t)). By the monotonicity theorem there is
a decomposition of M into finitely many points and open in-
tervals such that g; restricted to these open intervals is strictly
monotonically increasing, decreasing or constant. Let b; € M
be sucht that ]b;, 00 is the rightmost interval in the decompo-
sition of M corresponding to g;. If g; is strictly monotonical-
ly increasig, let g;(c0) = sup{g;(¢): t €]b;,00[}, if g; is strictly
monotonically decreasig, let g;(co) = inf{g;(t): t €]b;,0[}, if
g; 1s constant, let g;(00) = g;(b; + 1). Since X is assumed to
be bounded, we have g;(c0) € M also bounded. We now have

limy 00 g() = (91(00), ..., gm(0)) € X.

(iii) Deduce a contradiction, hence the result.

Solution:

As f and the norm are continuous, we have for all ¢ € M that
limy o0 || f(9(8)I] = [1f (limy— oo g(£))|| € M, which is a finite ele-
ment and contradicts || f(g(t))|| > t from part (i).




