RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 1

Definition: We say that a graph G = (V, E) is *transitive* (or *vertex transitive*) if for every $x, y \in V$ there exists $\varphi \in Aut(G)$ such that $\varphi(x) = y$.

(*) Exercise 1. Let us consider the graph G = (V, E), with

$$V = \bigcup_{n \in \mathbb{Z}} \{n\} \times 2^{n} \mathbb{Z}$$

$$E = \{\{(n, k \cdot 2^{n}), (n - 1, 2k \cdot 2^{n-1})\}, n \in \mathbb{Z}, k \in \mathbb{Z}\}$$

$$\cup \{\{(n, k \cdot 2^{n}), (n - 1, (2k + 1) \cdot 2^{n-1})\}, n \in \mathbb{Z}, k \in \mathbb{Z}\}.$$

- (i) Make a drawing of G. Do you recognise this graph?
- (ii) Show that G is transitive.
- (*) Exercise 2. Let G = (V, E) be a locally finite transitive graph.
 - (i) Prove that for every $x, y \in V$, $\deg(x) = \deg(y)$.
- (ii) Let $\varphi \in Aut(G)$. Prove that for every $x, y \in V$, $d(\varphi(x), \varphi(y)) = d(x, y)$, where d denotes the graph distance.

Exercise 3. Let G = (V, E) be a graph. We say that G is *edge transitive* if for every $e_1, e_2 \in E$, there is an automorphism of G that maps e_1 to e_2 .

- (i) Show that if G is edge transitive then it is not necessarily vertex transitive.
- (ii) Show that the reciprocal is also not true.