RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 11

(\star) Exercise 1. (Total variation distance) Let \mathcal{X} be a finite set and μ, ν two probability measures on \mathcal{X}. We define the total variation distance between μ and ν by

$$
d_{\mathrm{TV}}(\mu, \nu):=\max _{A \subset \mathcal{X}}|\mu(A)-\nu(A)| .
$$

(i) Prove that

$$
d_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{x \in \mathcal{X}}|\mu(x)-\nu(x)| .
$$

(ii) Show that

$$
d_{\mathrm{TV}}(\mu, \nu)=1-\sum_{x \in \mathcal{X}} \mu(x) \wedge \nu(x) .
$$

(iii) Let $p:=1-d_{\mathrm{TV}}(\mu, \nu)$. Assume that $p \in(0,1)$. Consider X, Y, Z, B independent random variables with

$$
X \sim \frac{1}{p}(\mu \wedge \nu), \quad Y \sim \frac{1}{1-p}(\mu-\mu \wedge \nu), \quad Z \sim \frac{1}{1-p}(\nu-\mu \wedge \nu), \quad B \sim \operatorname{Ber}(p) .
$$

Let us define

$$
\left(U_{0}, V_{0}\right):= \begin{cases}(X, X) & \text { if } B=1 \\ (Y, Z) & \text { if } B=0\end{cases}
$$

Check that X, Y, Z are well defined random variables, and prove that $U_{0} \sim \mu, V_{0} \sim \nu$, and $d_{\mathrm{TV}}(\mu, \nu)=\mathbb{P}\left[U_{0} \neq V_{0}\right]$.
(iv) Prove that

$$
d_{\mathrm{TV}}(\mu, \nu)=\min _{\substack{U \sim \mu \\ V \sim \nu}} \mathbb{P}[U \neq V],
$$

where the minimum is taken over all random variables U, V with $U \sim \nu$ and $V \sim \nu$.
(\star) Exercise 2. (Sedrakyan's inequality) Let X, Y be real random variables with $Y>0$. Prove that

$$
\mathbb{E}\left[\frac{X^{2}}{Y}\right] \geq \frac{\mathbb{E}[|X|]^{2}}{\mathbb{E}[Y]} .
$$

Hint: Use Cauchy-Schwarz.
(\star) Exercise 3. Let \mathcal{X} be a finite set, and X, Y be two random variables with values on \mathcal{X}. Let $\widetilde{X}, \widetilde{Y}$ be two independent copies of X and Y, that is

$$
\widetilde{X} \sim X, \widetilde{Y} \sim Y, \text { and } \widetilde{X} \Perp \widetilde{Y}
$$

Let us define

$$
r(x, y):=\frac{\mathbb{P}[X=x, Y=y]}{\mathbb{P}[\widetilde{X}=x, \widetilde{Y}=y]}=\frac{\mathbb{P}[X=x, Y=y]}{\mathbb{P}[X=x] \mathbb{P}[Y=y]},
$$

with the convention $0 / 0=1$. Consider the random variable $R:=r(\widetilde{X}, \widetilde{Y})$.
(i) Check that $\mathbb{E}[R]=1$ and $\mathbb{E}[R \log R]=H(X)+H(Y)-H(X, Y)$.
(ii) Prove that $\forall u \geq 0$,

$$
u \log u-u+1 \geq \frac{3}{2} \frac{(u-1)^{2}}{2+u}
$$

(iii) Prove that

$$
\mathbb{E}[R \log R] \geq \frac{3}{2} \frac{\mathbb{E}[|R-1|]^{2}}{\mathbb{E}[2+R]}
$$

(iv) Conclude that

$$
\sum_{x, y \in \mathcal{X}}|\mathbb{P}[X=x, Y=y]-\mathbb{P}[X=x] \mathbb{P}[Y=y]| \leq \sqrt{2} \sqrt{H(X)+H(Y)-H(X, Y)}
$$

(*) Exercise 4. Let (X_{n}) be the lazy random walk on a connected and infinite transitive graph $G=(V, E)$. Let us assume that its Avez entropy $h=0$.
(i) Prove that $\forall k \geq 0$,

$$
H\left(X_{k+n}\right)+H\left(X_{k}\right)-H\left(X_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

(ii) Deduce that $\forall x, y \in V$,

$$
d_{\mathrm{TV}}\left(\mu_{x}^{n}, \mu_{y}^{n-d}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

where $d=d(x, y)$ and μ_{x}^{n} is the law of X_{n} under \mathbb{P}_{x} (i.e. $\left.\mu_{x}^{n}(z)=p_{n}(x . y)\right)$.

