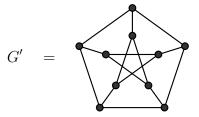
RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 2

In this exercise sheet we consider G = (V, E) an infinite, locally finite, connected, and transitive graph with fixed origin $o \in V$.

(*) Exercise 1. Show that $\forall x, y \in V, B_n(x) \cong B_n(y)$.

Exercise 2. We consider Petersen's graph, defined by



- (i) Check that G' is transitive.
- (ii) Prove that G' is not a Cayley graph.

Hint: use that the only groups of order 10 *are* $\mathbb{Z}/10\mathbb{Z}$ *and the dihedral group* D_{10} *.*

(*) Exercise 3. Let (X_n) be the simple random walk on G, starting at o. Let (Z_i) be a sequence of i.i.d. random variables with distribution Ber(1/2). We define

$$T_0 = 0, \quad T_n = \sum_{i=1}^n Z_i \text{ for } n \ge 1, \text{ and } \widetilde{X}_n = X_{T_n} \text{ for } n \ge 0.$$

Prove that (\widetilde{X}_n) is a lazy random walk starting from x.

(*) Exercise 4. For every $x \in V$ we fix $\phi_x \in \operatorname{Aut}(G)$ such that $\phi_x(o) = x$. Let $(Z_i)_{i \geq 1}$ be an i.i.d. sequence of random variables with uniform distribution in $\mathcal{N}_o = \{y \in V : y \sim o\}$. We define

 $X_0 = x$, $X_{n+1} = \phi_{X_n}(Z_{n+1})$ for $n \ge 1$.

Show that (X_n) is a simple random walk on G started at x.

Exercise 5. (Fekete's Subadditivity Lemma) Let $(u_n)_{n\geq 0}$ be a subadditive sequence in $[-\infty, +\infty)$, that is

 $\forall m, n \ge 0, u_{m+n} \le u_m + u_n.$

Prove that the limit of $\left(\frac{u_n}{n}\right)$ exists in $\left[-\infty, +\infty\right)$ and it is equal to $\inf_{n\geq 0}\frac{u_n}{n}$.