RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 3

In this exercise sheet we consider G = (V, E) an infinite, locally finite, connected, and transitive graph of degree d > 0 with fixed origin $o \in V$.

(*) Exercise 1. Let (X_n) be a simple random walk on G, starting at o. Show that (X_n) is aperiodic if and only if G is not bipartite.

In the following exercises we denote by $p_n(o) := \mathbb{P}_o[X_n = o], n \ge 0$ the return probability of (X_n) to o after n steps, where (X_n) is either a simple or a lazy random walk on G starting at o.

 (\star) Exercise 2.

- (i) Prove that $p_{2n}(o)$ is non increasing in n.
- (ii) Prove that $p_{2n+1}(o) \le p_{2n}(o)$ for all $n \ge 0$.
- (iii) Is $p_{2n+1}(o)$ decreasing in n?

(*) Exercise 3. Prove that $p_{2n}(o) \ge \frac{1}{|B_{2^n}|}$, for every $n \ge 0$.

(*) Exercise 4. Let (X_n) and (\tilde{X}_n) be respectively a simple and a lazy random walk on G, starting at o.

- (i) Is it true that $\mathbb{P}_o[\widetilde{X}_{2n} = o] \ge \mathbb{P}_o[X_{2n} = o]$ for every $n \ge 0$?
- (ii) Show that $\mathbb{P}_o[\widetilde{X}_{2n} = o] \ge \frac{1}{2}\mathbb{P}_o[X_{2n} = o]$ for every $n \ge 0$.

Exercise 5.

(i) Prove that if (X_n) is a lazy random walk, then

$$p_{2n+1}(o) \sim p_{2n}(o)$$
 as $n \to \infty$.

(ii) Suppose that (X_n) is an aperiodic simple random walk. Show that

$$p_{2n+1}(o) \sim p_{2n}(o)$$
 as $n \to \infty$.

Exercise 6. Let $S \subset V$ finite. We recall the following definitions

$$\partial S = \{\{x, y\} \in E : x \in S, \ y \in V \setminus S\},\$$
$$\partial^{\text{in}}S = \{x \in S : \exists y \in V \setminus S, \ y \sim x\},\$$
$$\partial^{\text{out}}S = \{x \in V \setminus S : \exists y \in S, \ y \sim x\}.$$

- (i) Prove that $|\partial^{\text{in}}S| \le |\partial S| \le (d-1)|\partial^{\text{in}}S|$.
- (ii) Is it always true that $|\partial^{in}S| \leq |\partial^{out}S|$?

(*) Exercise 7. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be infinite, locally finite and transitive graphs. We define the product graph $G_1 \times G_2 := (V, E)$ where $V = V_1 \times V_2$ and

 $E = \big\{ \{ \{x_1, x_2\}, \{y_1, y_2\} \} : (x_1 = y_1, \{x_2, y_2\} \in E_2) \text{ or } (x_2 = y_2, \{x_1, y_1\} \in E_1) \big\}.$

Show that $\Phi(G_1 \times G_2) = \Phi(G_1) + \Phi(G_2)$, where Φ is the isomperimetric constant of the given graph.