RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 4

In this exercise sheet we consider G = (V, E) an infinite, locally finite, connected, and transitive graph of degree d > 0 with fixed origin $o \in V$. We denote $p_n(o) := \mathbb{P}_o[X_n = o]$, $n \ge 0$ the return probability of (X_n) to o after n steps, where (X_n) is a lazy random walk on G starting at o.

Definition (Grandparent Tree). Let T be a regular tree of degree 3. An *end* of T is an equivalence class of *rays* (that is, infinite, simple paths), where rays may start from any vertex and two rays are equivalent if they share all but finitely many vertices. Thus, given an end ξ , for every vertex x in T, there is a unique ray $x_{\xi} := (x_0, x_1, x_2, ...)$ in the class ξ that starts from $x = x_0$ (exercise). Call x_2 in this ray the ξ -grandparent of x. We call grandparent tree to the graph obtained from T by adding, for every x, an edge $\{x, x_2\}$ between x and its ξ -grandparent.

Remark: This graph is transitive and has degree 8 (exercise).

(*) Exercise 1. Let G be the grandparent tree given by an end ξ . Consider the evolving sets (S_n) associated to (X_n) on this graph G, with $S_0 = \{o\}$.

- (i) Show that there exists n such that $\mathbb{P}[S_n \neq \emptyset, o \notin S_n] > 0$.
- (ii) Let x_{ξ} the unique ray of ξ that starts at o. Show that for all $x \in x_{\xi}$ there exists n large enough such that $\mathbb{P}[S_n = \{x\}] > 0$.

(*) Exercise 2. Consider the evolving sets (S_n) associated to the lazy random walk on \mathbb{Z}^2 (starting from $S_0 = \{(0,0)\}$). Compute

$$|\{S \subset V : \mathbb{P}[S_n = S] > 0\}|.$$

(*) Exercise 3. Suppose that G has exponential growth. Show that there exists a constant c > 0 such that for all $u \ge 1$,

$$\varphi(u) \ge \frac{c}{\log(2u)},$$

where φ denotes the expansion profile of G. Use this to prove that there exist constants $c_1, c_2 > 0$ such that for all $n \ge 0$,

$$p_n(o) \le c_1 \exp(-c_2 n^{1/3}).$$

Exercise 4. (Mass-Transport Principle) Let us assume that G is amenable, and consider $f: V \times V \to [0, \infty]$ an invariant map, that is, for every $x, y \in V$ and every $\phi \in \text{Aut}(G)$, $f(\phi(x), \phi(y)) = f(x, y)$.

(i) We assume that $||f||_{\infty} < \infty$ and that there exists $n < \infty$ such that for every $x, y \in V$ with $d(x, y) \ge n$, we have f(x, y) = 0. Let $K \subset V$ finite. Prove that

$$\left|\sum_{\substack{x \in K \\ y \in V}} f(x, y) - \sum_{\substack{x \in V \\ y \in K}} f(x, y)\right| \le 2||f||_{\infty}|B_n|^2|\partial K|.$$

Deduce that

$$\sum_{x \in V} f(o, x) = \sum_{x \in V} f(x, o). \tag{1}$$

(ii) Prove (1) for a general invariant $f: V \times V \to [0, \infty]$.

Exercise 5. In this exercise we want to prove the following theorem for G amenable

Theorem. Define for every
$$m \ge 1$$
, $R(m) := \min\{r : |B_r| \ge m\}$. For every $u \ge 1$

$$\varphi(u) \ge \frac{1}{2R(2u)}.$$

In order to do so, let us fix an integer $r \ge 0$. For every $x \in V$, we define

$$Y_r(x) \sim \mathcal{U}(B_r(x))$$

Let γ be a uniform geodesic from x to $Y_n(x)$. For $i \in \{0, \ldots, r\}$ we define

$$Y_i(x) := \gamma_{i \wedge d(x, Y_r(x))}$$

(i) Prove that for every $i \in \{0, ..., r\}$ and for every $y \in V$,

$$\sum_{x \in V} \mathbb{P}[Y_i(x) = y] = 1$$

(ii) Deduce that for every $i \in \{0, ..., r\}$ and for every $K \subset V$ finite,

$$\sum_{x \in V} \mathbb{P}[Y_i(x) \in \partial^{\mathrm{in}} K] \le |\partial^{\mathrm{in}} K|$$

(iii) Let $K \subset V$ finite. Prove that for every $i \in \{0, \ldots, r\}$,

$$\sum_{x \in K} \mathbb{P}[Y_i(x) \notin K] \le r \cdot |\partial^{\mathrm{in}} K|.$$

(iv) Prove that for r = R(2|K|) and for every $i \in \{0, \ldots, r\}$,

$$\sum_{x \in K} \mathbb{P}[Y_i(x) \notin K] \ge \frac{|K|}{2}.$$

(v) Conclude the Theorem.