RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 5

(*) Exercise 1. Let $Z \ge 0$ be a discrete random variable and $f : \mathbb{R} \to [0, \infty)$ a non decreasing function. Prove that

$$\mathbb{E}[Zf(Z)] > af(a)$$
, where $a = \frac{1}{2}\mathbb{E}[Z]$.

(*) Exercise 2. Let $X \ge 0$ be a discrete random variable such that $\mathbb{E}[X^2] = 1$. Consider Y the random variable defined by

$$\forall k \in \operatorname{supp}(X), \ \mathbb{P}[y=k] = k^2 \mathbb{P}[X=k].$$

- (i) Why is Y well defined?
- (ii) Prove that for every function $g : \mathbb{R} \to [0, \infty)$, with g(0) = 0,

$$\mathbb{E}[g(X)] = \mathbb{E}\left[\frac{1}{Y^2}g(Y)\right].$$

(iii) Set $h : \mathbb{R} \to [0, \infty)$ be a non increasing function. Show that

$$\mathbb{E}[Xh(X)] \ge ah\left(\frac{1}{a}\right)$$
, with $a = \frac{1}{2}\mathbb{E}[X]$.

Exercise 3. Prove that $\forall t \in [0, 1]$,

$$\frac{\sqrt{1+t}}{2} + \frac{\sqrt{1-t}}{2} \le 1 - \frac{t^2}{8}.$$